
1

Paper 191-27

AN INTRODUCTION TO PROC SQL®

Katie Minten Ronk, Steve First, David Beam
Systems Seminar Consultants, Inc., Madison, WI

ABSTRACT
PROC SQL is a powerful Base SAS7 Procedure that combines
the functionality of DATA and PROC steps into a single step.
PROC SQL can sort, summarize, subset, join (merge), and
concatenate datasets, create new variables, and print the results
or create a new table or view all in one step!

PROC SQL can be used to retrieve, update, and report on
information from SAS data sets or other database products. This
paper will concentrate on SQL's syntax and how to access
information from existing SAS data sets. Some of the topics
covered in this brief introduction include:

Write SQL code using various styles of the SELECT statement.
Dynamically create new variables on the SELECT statement.
Use CASE/WHEN clauses for conditionally processing the data.
Joining data from two or more data sets (like a MERGE!).
Concatenating query results together.

WHY LEARN PROC SQL?
PROC SQL can not only retrieve information without having to
learn SAS syntax, but it can often do this with fewer and shorter
statements than traditional SAS code. Additionally, SQL often
uses fewer resources than conventional DATA and PROC steps.
Further, the knowledge learned is transferable to other SQL
packages.

AN EXAMPLE OF PROC SQL SYNTAX
Every PROC SQL query must have at least one SELECT
statement. The purpose of the SELECT statement is to name the
columns that will appear on the report and the order in which they
will appear (similar to a VAR statement on PROC PRINT). The
FROM clause names the data set from which the information will
be extracted from (similar to the SET statement). One advantage
nof SQL is that new variables can be dynamically created on the
SELECT statement, which is a feature we do not normally
associate with a SAS Procedure:

PROC SQL;
SELECT STATE, SALES,

(SALES * .05) AS TAX
FROM USSALES;

QUIT;

(no output shown for this code)

THE SELECT STATEMENT SYNTAX
The purpose of the SELECT statement is to describe how the
report will look. It consists of the SELECT clause and several
sub-clauses. The sub-clauses name the input dataset, select
rows meeting certain conditions (subsetting), group (or aggregate)
the data, and order (or sort) the data:

PROC SQL options;
SELECT column(s)
FROM table-name | view-name
WHERE expression
GROUP BY column(s)
HAVING expression
ORDER BY column(s);

QUIT;

A SIMPLE PROC SQL
An asterisk on the SELECT statement will select all columns from
the data set. By default a row will wrap when there is too much
information to fit across the page. Column headings will be
separated from the data with a line and no observation number
will appear:

PROC SQL;
SELECT *
FROM USSALES;

QUIT;

(see output #1 for results)

LIMITING INFORMATION ON THE SELECT
To specify that only certain variables should appear on the report,
the variables are listed and separated on the SELECT statement.
The SELECT statement does NOT limit the number of variables
read. The NUMBER option will print a column on the report
labeled 'ROW' which contains the observation number:

PROC SQL NUMBER;
SELECT STATE, SALES
FROM USSALES;

QUIT;

(see output #2 for results)

CREATING NEW VARIABLES
Variables can be dynamically created in PROC SQL.
Dynamically created variables can be given a variable name,
label, or neither. If a dynamically created variable is not given a
name or a label, it will appear on the report as a column with no
column heading. Any of the DATA step functions can be used in
an expression to create a new variable except LAG, DIF, and
SOUND. Notice the commas separating the columns:

PROC SQL;
SELECT SUBSTR(STORENO,1,3) LABEL='REGION',

SALES, (SALES * .05) AS TAX,
(SALES * .05) * .01

FROM USSALES;
QUIT;

(see output #3 for results)

THE CALCULATED OPTION ON THE SELECT
Starting with Version 6.07, the CALCULATED component refers
to a previously calculated variable so recalculation is not
necessary. The CALCULATED component must refer to a
variable created within the same SELECT statement:

PROC SQL;
SELECT STATE, (SALES * .05) AS TAX,

(SALES * .05) * .01 AS REBATE
FROM USSALES;

SUGI 27 Hands-on Workshops

2

- or -
SELECT STATE, (SALES * .05) AS TAX,

CALCULATED TAX * .01 AS REBATE
FROM USSALES;

QUIT;

(see output #4 for results)

USING LABELS AND FORMATS
SAS-defined or user-defined formats can be used to improve the
appearance of the body of a report. LABELs give the ability to
define longer column headings:

TITLE 'REPORT OF THE U.S. SALES';
FOOTNOTE 'PREPARED BY THE MARKETING DEPT.';
PROC SQL;

SELECT STATE, SALES
FORMAT=DOLLAR10.2
LABEL='AMOUNT OF SALES',

(SALES * .05) AS TAX
FORMAT=DOLLAR7.2
LABEL='5% TAX'

FROM USSALES;
QUIT;

(see output #5 for results)

THE CASE EXPRESSION ON THE SELECT
The CASE Expression allows conditional processing within PROC
SQL:

PROC SQL;
SELECT STATE,

CASE
WHEN SALES<=10000 THEN 'LOW'
WHEN SALES<=15000 THEN 'AVG'
WHEN SALES<=20000 THEN 'HIGH'
ELSE 'VERY HIGH'

END AS SALESCAT
FROM USSALES;

QUIT;

(see results #6 for results)

The END is required when using the CASE. Coding the WHEN in
descending order of probability will improve efficiency because
SAS will stop checking the CASE conditions as soon as it finds
the first true value.

ANOTHER CASE
The CASE statement has much of the same functionality as an IF
statement. Here is yet another variation on the CASE expression:

PROC SQL;
SELECT STATE,

CASE
WHEN SALES > 20000 AND STORENO

IN ('33281','31983') THEN 'CHECKIT'
ELSE 'OKAY'

END AS SALESCAT
FROM USSALES;

QUIT;

(see output #7 for results)

ADDITIONAL SELECT STATEMENT CLAUSES
The GROUP BY clause can be used to summarize or aggregate
data. Summary functions (also referred to as aggregate
functions) are used on the SELECT statement for each of the
analysis variables:

PROC SQL;
SELECT STATE, SUM(SALES) AS TOTSALES
FROM USSALES
GROUP BY STATE;

QUIT;

(see output #8 for results)

Other summary functions available are the AVG/MEAN,
COUNT/FREQ/N, MAX, MIN, NMISS, STD, SUM, and VAR.
This capability Is similar to PROC SUMMARY with a CLASS
statement.

REMERGING
Remerging occurs when a summary function is used without a
GROUP BY. The result is a grand total shown on every line:

PROC SQL;
SELECT STATE, SUM(SALES) AS TOTSALES
FROM USSALES;

QUIT;

(see output #9 for results)

REMERGING FOR TOTALS
Sometimes remerging is good, as in the case when the SELECT
statement does not contain any other variables:

PROC SQL;
SELECT SUM(SALES) AS TOTSALES
FROM USSALES;

QUIT;

(see output #10 for results)

CALCULATING PERCENTAGE
Remerging can also be used to calculate percentages:

PROC SQL;
SELECT STATE, SALES,

(SALES/SUM(SALES)) AS PCTSALES
FORMAT=PERCENT7.2

FROM USSALES;
QUIT;

(see output #11 for results)

Check your output carefully when the remerging note appears in
your log to determine if the results are what you expect.

SORTING THE DATA IN PROC SQL
The ORDER BY clause will return the data in sorted order: Much
like PROC SORT, if the data is already in sorted order, PROC
SQL will print a message in the LOG stating the sorting utility was
not used. When sorting on an existing column, PROC SQL and
PROC SORT are nearly comparable in terms of efficiency. SQL
may be more efficient when you need to sort on a dynamically
created variable:

PROC SQL;
SELECT STATE, SALES
FROM USSALES
ORDER BY STATE, SALES DESC;

QUIT;

(see output #12 for results)

SORT ON NEW COLUMN
On the ORDER BY or GROUP BY clauses, columns can be
referred to by their name or by their position on the SELECT

SUGI 27 Hands-on Workshops

3

cause. The option 'ASC' (ascending) on the ORDER BY clause
is the default, it does not need to be specified.

PROC SQL;
SELECT SUBSTR(STORENO,1,3)

LABEL='REGION',
(SALES * .05) AS TAX

FROM USSALES
ORDER BY 1 ASC, TAX DESC;

QUIT;

(see output #13 for results)

SUBSETTING USING THE WHERE
The WHERE statement will process a subset of data rows before
they are processed:

PROC SQL;
SELECT *
FROM USSALES
WHERE STATE IN

('OH','IN','IL');

SELECT *
FROM USSALES
WHERE NSTATE IN (10,20,30);

SELECT *
FROM USSALES
WHERE STATE IN

('OH','IN','IL')
AND SALES > 500;

QUIT;

(no output shown for this example)

INCORRECT WHERE CLAUSE
Be careful of the WHERE clause, it cannot reference a computed
variable:

PROC SQL;
SELECT STATE, SALES,

(SALES * .05) AS TAX
FROM USSALES
WHERE STATE IN

('OH','IN','IL')
AND TAX > 10 ;

QUIT;

(see output #14 for results)

WHERE ON COMPUTED COLUMN
To use computed variables on the WHERE clause they must be
recomputed:

PROC SQL;
SELECT STATE, SALES,

(SALES * .05) AS TAX
FROM USSALES
WHERE STATE IN

('OH','IL','IN')
AND (SALES * .05) > 10;

QUIT;

(see output #15 for results)

SELECTION ON GROUP COLUMN
The WHERE clause cannot be used with the GROUP BY:

PROC SQL;
SELECT STATE, STORE,

SUM(SALES) AS TOTSALES
FROM USSALES
GROUP BY STATE, STORE
WHERE TOTSALES > 500;

QUIT;

(see output #16 for results)

USE HAVING CLAUSE
In order to subset data when grouping is in effect, the HAVING
clause must be used:

PROC SQL;
SELECT STATE, STORENO,

SUM(SALES) AS TOTSALES
FROM USSALES
GROUP BY STATE, STORENO
HAVING SUM(SALES) > 500;

QUIT;

(see output #17 for results)

HAVING WITHOUT A COMPUTED COLUMN
The HAVING clause is needed even if it is not referring to a
computed variable:

PROC SQL;
SELECT STATE,

SUM(SALES) AS TOTSALES
FROM USSALES
GROUP BY STATE
HAVING STATE IN ('IL','WI');

QUIT;

(see output #18 for results)

CREATING NEW TABLES OR VIEWS
The CREATE statement provides the ability to create a new data
set as output in lieu of a report (which is what happens when a
SELECT is present without a CREATE statement). The CREATE
statement can either build a TABLE (a traditional SAS dataset,
like what is built on a SAS DATA statement) or a VIEW (not
covered in this paper):

PROC SQL;
CREATE TABLE TESTA AS
SELECT STATE, SALES
FROM USSALES
WHERE STATE IN ('IL','OH');

SELECT * FROM TESTA;
QUIT;

(see output #19 for results)

The name given on the create statement can either be temporary
or permanent. Only one table or view can be created by a
CREATE statement. The second SELECT statement (without a
CREATE) is used to generate the report.

JOINING DATASETS USING PROC SQL
A join is used to combine information from multiple files. One
advantage of using PROC SQL to join files is that it does not
require sorting the datasets prior to joining as is required with a
DATA step merge.

A Cartesian Join combines all rows from one file with all rows
from another file. This type of join is difficult to perform using
traditional SAS code.

PROC SQL;
SELECT *

SUGI 27 Hands-on Workshops

4

FROM JANSALES, FEBSALES;
QUIT;

(see output #20 for results)

INNER JOIN
A Conventional or Inner Join combines datasets only if an
observation is in both datasets. This type of join is similar to a
DATA step merge using the IN Data Set Option and IF logic
requiring that the observation is on both data sets (IF ONA AND
ONB).

PROC SQL;
SELECT U.STORENO, U.STATE,

F.SALES AS FEBSALES
FROM USSALES U, FEBSALES F
WHERE U.STORENO=F.STORENO;

QUIT;

(see output #21 for results)

JOINING THREE OR MORE TABLES
An Associative Join combines information from three or more
tables. Performing this operation using traditional SAS code
would require several PROC SORTs and several DATA step
merges. The same result can be achieved with one PROC SQL:

PROC SQL;
SELECT B.FNAME, B.LNAME, CLAIMS,

E.STORENO, STATE
FROM BENEFITS B, EMPLOYEE E,

FEBSALES F
WHERE B.FNAME=E.FNAME AND

B.LNAME=E.LNAME AND
E.STORENO=F.STORENO AND

CLAIMS > 1000;
QUIT;

(see output #22 for dataset list and results)

CONCATENATING QUERY RESULTS

Query results can be concatenated with the UNION operator.
The UNION operator keeps only unique observations. To keep all
observations, the UNION ALL operator can be used. Traditional
SAS syntax would require the creation of multiple tables and then
either a SET concatenation or a PROC APPEND. Again, the
results can be achieved with one PROC SQL:

PROC SQL;
CREATE TABLE YTDSALES AS
SELECT TRANCODE, STORENO, SALES
FROM JANSALES

UNION
SELECT TRANCODE, STORENO,

SALES * .99
FROM FEBSALES;

QUIT;

(no output shown for this example)

CHANGES IN VERSION 8
1. Some PROC SQL views are now updateable. The view

must be based on a single DBMS table or SAS data file and
must not contain a join, an ORDER BY clause, or a
subquery.

2. Whenever possible, PROC SQL passes joins to the DBMS
rather than doing the joins itself. This enhances
performance.

3. You can now store DBMS connection information in a view
with the USING LIBNAME clause.

4. A new option, DQUOTE=ANSI, enables you to non-SAS
names in PROC-SQL.

5. A PROC SQL query can now reference up to 32 views or
tables. PROC SQL can perform joins on up to 32 tables.

6. PROC SQL can now create and update tables that contain
integrity constraints.

IN SUMMARY
PROC SQL is a powerful data analysis tool. It can perform many
of the same operations as found in traditional SAS code, but can
often be more efficient because of its dense language structure.

PROC SQL can be an effective tool for joining data, particularly
when doing associative, or three-way joins. For more information
regarding SQL joins, reference the papers noted in the
bibliography.

TRADEMARK NOTICE
SAS and PROC SQL are registered trademarks of the SAS
Institute Inc., Cary, NC, USA and other countries.

USEFUL PUBLICATIONS

SAS Institute Inc., Getting Started with the SQL
Procedure, Version 6, First Edition

SAS Institute Inc., SAS7 Guide to the SQL
Procedure: Usage and Reference, Version 6, First
Edition

Kolbe Ritzow, Kim, "Joining Data with SQL",
Proceedings of the 6th Annual MidWest SAS7 Users
Group Conference

CONTACT INFORMATION

Any questions or comments regarding the paper
may be directed to:

Katie M Ronk
Steve First
Systems Seminar Consultant, Inc.
2997 Yarmouth Greenway Drive
Madison, WI 53711
Phone: (608) 278-9964
Fax: (608) 278-0065
Email: train@sys-seminar.com

SUGI 27 Hands-on Workshops

5

OUTPUT #1 (PARTIAL):
 STATE SALES STORENO

 COMMENT

 STORENAM

 --

 WI 10103.23 32331

 SALES WERE SLOW BECAUSE OF COMPETITORS SALE

 RON'S VALUE RITE STORE

 WI 9103.23 32320

 SALES SLOWER THAN NORMAL BECAUSE OF BAD WEATHER

 PRICED SMART GROCERS

 WI 15032.11 32311

 AVERAGE SALES ACTIVITY REPORTED

 VALUE CITY

OUTPUT #2 (PARTIAL):
ROW STATE SALES

 1 WI 10103.23

 2 WI 9103.23

 3 WI 15032.11

OUTPUT #3 (PARTIAL):
 REGION SALES TAX

323 10103.23 505.1615 5.051615

323 9103.23 455.1615 4.551615

323 15032.11 751.6055 7.516055

332 33209.23 1660.462 16.60461

OUTPUT #4 (PARTIAL):

STATE TAX REBATE

 WI 505.1615 5.051615

 WI 455.1615 4.551615

 WI 751.6055 7.516055

 MI 1660.462 16.60461

OUTPUT #5 (PARTIAL):
 REPORT OF THE U.S. SALES

 AMOUNT OF

 STATE SALES 5% TAX

 WI $10,103.23 $505.16

 WI $9,103.23 $455.16

 WI $15,032.11 $751.61

 MI $33,209.23 1660.46

 PREPARED BY THE MARKETING DEPT.

SUGI 27 Hands-on Workshops

6

OUTPUT #6 (PARTIAL):
STATE SALESCAT

 WI AVG

 WI LOW

 WI HIGH

 MI VERY HIGH

SUGI 27 Hands-on Workshops

7

OUTPUT #7 (PARTIAL):
 STATE SALESCAT

 WI OKAY

 WI OKAY

 WI OKAY

 MI CHECKIT

OUTPUT #8:
STATE TOTSALES

 IL 84976.57

 MI 53341.66

 WI 34238.57

OUTPUT #9 (PARTIAL):
STATE TOTSALES

WI 172556.8

WI 172556.8

WI 172556.8

MI 172556.8

OUTPUT #10:
TOTSALES

172556.8

OUTPUT #11 (PARTIAL):
(log message shown) STATE SALES PCTSALES

WI 10103.23 5.86%
WI 9103.23 5.28%
WI 15032.11 8.71%
MI 33209.23 19.2%

NOTE: The query requires remerging summary
Statistics back with the original data.

OUTPUT #12 (PARTIAL):
STATE SALES

IL 32083.22
IL 22223.12
IL 20338.12
IL 10332.11
MI 33209.23

SUGI 27 Hands-on Workshops

8

OUTPUT #13 (PARTIAL):
REGION TAX

312 516.6055
313 1604.161
313 1111.156
319 1016.906

OUTPUT #14 (THE RESULTING SAS LOG- PARTIAL):

27 PROC SQL;

 28 SELECT STATE,SALES, (SALES * .05) AS TAX

 29 FROM USSALES

 30 WHERE STATE IN ('OH','IN','IL') AND TAX > 10;

 ERROR: THE FOLLOWING COLUMNS WERE NOT FOUND IN THE

CONTRIBUTING TABLES: TAX.

NOTE: The SAS System stopped processing this step because

 of errors.

OUTPUT #15 (PARTIAL):
STATE SALES TAX

WI 10103.23 505.1615

WI 9103.23 455.1615

WI 15032.11 751.6055

IL 20338.12 1016.906

OUTPUT #16 (THE RESULTING SAS LOG- PARTIAL):

167 GROUP BY STATE, STORE

168 WHERE TOTSALES > 500;

22

202

ERROR 22-322: Expecting one of the following: (, **, *, /, +, -,

!!, ||, <, <=, <>, =, >, >=, EQ, GE, GT, LE, LT,

NE, ^=, ~=, &, AND, !, OR, |, ',', HAVING, ORDER.

The statement is being ignored.

ERROR 202-322: The option or parameter is not recognized.

SUGI 27 Hands-on Workshops

9

OUTPUT #17 (PARTIAL):
STATE STORENO TOTSALES

IL 31212 10332.11

IL 31373 22223.12

IL 31381 32083.22

IL 31983 20338.12

MI 33281 33209.23

OUTPUT #18:
STATE TOTSALES

IL 84976.57

WI 34238.57

OUTPUT #19:
STATE SALES

IL 20338.12

IL 10332.11

IL 32083.22

IL 22223.12

OUTPUT #20(PARTIAL):

STATE SALES STORENO NUMEMP STATE SALES STORENO

ƒƒ

WI 9103.23 32320 10 IL 30083.22 31381

WI 9103.23 32320 10 IL 30083.22 31381

WI 15032.11 32311 13 IL 30083.22 31381

MI 33209.23 33281 25 IL 30083.22 31381

MI 20132.43 33312 20 IL 30083.22 31381

IL 20338.12 31983 21 IL 30083.22 31381

IL 10332.11 31212 18 IL 30083.22 31381

IL 32083.22 31381 31 IL 30083.22 31381

IL 22223.12 31373 28 IL 30083.22 31381

WI 9103.23 32320 10 IL 26223.12 31373

WI 9103.23 32320 10 IL 26223.12 31373

WI 15032.11 32311 13 IL 26223.12 31373

MI 33209.23 33281 25 IL 26223.12 31373

OUTPUT #21 (PARTIAL):

STORENO STATE FEBSALES

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

32320 WI 9103.23

32331 WI 8103.23

32320 WI 10103.23

32311 WI 13032.11

33281 MI 31209.23

33312 MI 15132.43

31983 IL 25338.12

31212 IL 8332.11

OUTPUT #22:

SUGI 27 Hands-on Workshops

10

EMPLOYEE FEBSALES BENEFITS

OBS FNAME LNAME STORENO OBS STATE SALES STORENO OBS FNAME LNAME CLAIMS

1 ANN BECKER 33281 1 MI 31209.23 33281 1 ANN BECKER 2003

2 CHRIS DOBSON 33281 2 MI 15132.43 33312 2 CHRIS DOBSON 100

3 EARL FISHER 33281 3 IL 25338.12 31983 3 ALLEN PARK 10392

4 ALLEN PARK 31373 4 IL 26223.12 31373 4 BETTY JOHNSON 3832

5 BETTY JOHNSON 31373

6 KAREN ADAMS 31373

FNAME LNAME CLAIMS STORENO STATE

ANN BECKER 2003 33281 MI

ALLEN PARK 10392 31373 IL

BETTY JOHNSON 3832 31373 IL

SUGI 27 Hands-on Workshops

11

SUGI 27 Hands-on Workshops

	SUGI 27 Title Page

