
 

ABSTRACT 
 
The Receiver Operating Characteristic (ROC) curve is a 
curve presented in a probability scale graph and is used 
to judge the discrimination ability of various statistical 
methods for predictive purposes.  The area under the 
ROC curve can be measured and converted to a single 
quantitative index for diagnostic accuracy. 
 
An explicit functional form approach is proposed as an 
alternative estimation method to evaluate the area under 
a ROC curve.  This paper provides an explicit functional 
form to represent the ROC curve through SAS code for 
parameter estimation and the area under the curve 
calculation.  The empirical ROC curves produced from 
this approach are much smoother with convexity of the 
curves. 
 
The SAS products used in this paper are base SAS � , 
SAS/STAT� and SAS/GRAPH®,  with no limitation of 
operating systems. 
 
 
INTRODUCTION 

The clinicians tried to determine "….whether a patient 
would need hospitalization or would he/she benefit from 
just treatment-" in a clinical trial study.  This question can 
be converted into the following statements: In a sample 
of n patients, suppose n1 patients are observed to have 
a certain condition or event.  Then n patients undergo a 
test for predicting the event and the test is based on the 
estimated probability of the event. Higher values of this 
estimated probability are assumed to be associated with 
the event.  
 
Receiver Operating Characteristic (ROC) curves are  
popular as a tool for detection of clinical related events or 
various conditions such as asymptomatic dysfunction or 
disease. .  The sensitivity is the probability of a positive 
test, given the subject's true response is positive. the 
specificity is the probability of a negative test, given the 
subject's true response is negative. The ROC curve, 
shown in Figure 1 by plotting of sensitivity versus 1 - 
specificity, is used to judge the discrimination ability of 
various statistical methods for predictive purposes 
 
The area under a ROC curve, shown as the shaded area 
in Figure 1, is a summarized quantitative index.  This 
index, varies between 0.5 (no discrimination power) to 
1.0 (perfect accuracy) as the ROC travels towards the left 
and top boundaries of the graph.  The meaning of the 
area under an ROC curve, namely the index, is a 
"probability of correctly ranking a (normal, abnormal) 
pair".  In other words, the index is a probability of correct 
pairwise rankings. 

There are several methods to estimate the area under a 
ROC curve; iterative maximum likelihood estimation, 
fitted curve method, the Wilcoxon or Mann-Whitney 
statistical method and trapezoidal rule.  An explicit 
nonlinear functional form with curve fitted computation 
methods is proposed in this paper. 
 
Different methods of estimating the area under a ROC 
curve are performed in this paper for comparison 
purposes. 
 
The functional form approach used in this paper 
assumes that the underlying distributions for normal and 
abnormal groups are Gaussian.  The functional form 
specified must satisfy the mathematical properties to 
assure that any estimated ROC can be correctly 
presented on the probability scale and graph. 
 
 
 

 
                    Figure 1. ROC Curve 
 
This paper is comprised of five parts.  Part 1 includes the 
abstract and the introduction.  Part 2 describes the 
functional form specification and its mathematical 
properties.  Part 3 is devoted to the application.  Part 4 
involves the comparison of estimation results from 
different estimation methods.  Part 5 concludes the 
paper. 
 
 
FUNCTIONAL FORM SPECIFICATION 

The ROC graph is presented on X, Y axis with ( X, Y ) 
values varied from 0  to  1.   When the graph is rotated 
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on the equalitarian line (a 45 degree line from the origin) 
the ROC curve becomes the well known Lorenz curve in 
social sciences. The Lorenz curve is a rotated ROC 
curve during symmetry with respect to equalitarian line. 
  
 

 
 
 
Figure 2. Rotated ROC Curve and Area of 
Discrimination Coefficient 
 
The functional form 

               y = ����(x)     . . . . . . . . . . . . . . . .  (1) 

represents the rotated ROC curve when it satisfies the 
following properties: 

           (i)   ����(0) = 0; 
           (ii)  ����(1) = 1; 
         (iii) ���� ' (x) ���� 0, for 0 ���� x < 1; 
         (iv) ���� " (x) ���� 0, for 0 ���� x ���� 1; 
         (v) ����(x) ���� x, for 0 < x < 1; 
         (vi)  0  ����   ����01����(x) dx  ���� 1/2. 
 
The functional form that satisfies all of the properties, 
proposed by Rache, Gaffney, Koo, and Obst [1] , is used 
in this paper.  The explicit functional form is as follows: 
 
            y = [ 1 –  ( 1 – x ) ���� ] 1/���� 
       where 0 <  ����  ���� 1,  0 < ���� ���� 1; 
 
SAS MACRO FOR PARAMETER ESTIMATION 
 
 
The NLIN procedure in SAS/STAT is employed for the 
rotated ROC curve parameter estimation.  

 %macro nlreg(dsin,x,y,dsout); 
 proc nlin data= &dsin 
      maxiter = 30 
      converge = .00001; 
      parms a1 = 0.5 
            b1 = 0.6; 
      bounds 0 < a1 <= 1, 
             0 < b1 <= 1; 
      model &y = ( 1 - ( 1 - &x)**a1)**(1 
/ b1 ); 
      output out=&dsout parms = a1 b1; 
%mend nlreg; 
 

 
The macro arguments for SAS macro nlreg are: 
 
   dsin: input dataset name 
   x: independent variable or values on equalitarian line 
   y: target variable for analysis 
   dsout: output dataset name 

 
SAS MACRO FOR DISCRIMINATION 
COEFFICIENT ESTIMATION 
 
The computation of the discrimination coefficient, shown 
in shaded area in Figure 2, is based on the functional 
form specified in equation (1). It is defined: 
 
   DC = 1.0 – 2.0 ����01  [ 1 – ( 1 – x ) ����  ]  1/����  dx, 
 
Substituting variables 
 
                        u = 1 – ( 1 – x)����  , 
 
this is equal to: 
 
DC = 1.0 – 2.0 (1/����) ����01  ( 1 – u )  1/����  u 1/���� - 1du 
      
      = 1.0 – 2.0 (1/����) * B ( 1/���� , 1/���� + 1) 
   
    where B represents the beta distribution.  
 
The SAS function of GAMMA is then used for the 
computing of the beta distribution. The macro %dc is 
designed for computing the discrimination coefficient. 
The arguments of this function are: 
 
      dsin : dataset name which is the output file from  
                 the execution of macro %nlreg, 
 
  a1, b1: estimate of parameters 
 
          n:    data selection cutpoint. 
 
The complete macro code is shown in the following 
block. 
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%macro dc(dsin, a1, b1, n); 
 data t&n; 
  set t&n; 
   aa1 = 1 / &a1; 
   bb1 = (1/ &b1) + 1; 
   c1 = aa1 + bb1; 
   cr = 1.0 - (2.0/ &a1) * (gamma(aa1) * 
        gamma(bb1) / gamma(c1)); 
   roc = cr / 2 + 0.5; 
   crt = &n; 
 drop  aa1 bb1 c1; 
%mend dc; 
 

 
 
SAS MACRO USING TRAPEZOIDAL RULE FOR 
AREA CALCULATION 
 
The macro is an alternative method to estimate the area 
under a curve.  
 
The trapezoidal rule is a numerical method to be used to 
approximate the integral or the area under a curve. Using 
trapezoidal rule to approximate the area under a curve 
involves slicing up the area to be found into a number of 
strips of equal width approximating the area of each strip 
by the area of the trapezium formed when the upper end 
is replaced by a chord; the sum of these approximations 
then gives the final numerical result of the area under the 
curve. The trapezoidal rule cab be presented as follows: 
 
Function  ����ab   f(x) dx   is a definite integral. The points 

of subdivision of the domain of the integration [ a, b ] are 

labelled x0, x1,  … xn;  

      where x0 = a, xn = b, xr = x0 + r ( b – a ) / n. 
 
Function T( a, b, n ) can be defined as the procedure of 
trapezoidal rule that 
 
T(a, b, n)  
= (( b – a ) / n) * (( ( f(a) + f(b) ) / 2) + ����  f ( a+ i (b-a)/n)) 
 
The summation  of the above equation is i  =  1  to  
n – 1. T(a, b, n) approximates the definite integral 
 
             ����ab   f(x) dx. 
 
Using trapezoidal rule with n number of intervals, 
provided f(x) is defined and that it is continuous in 
the domain [a, b]. The following SAS macro 
performs trapezoidal rule for area under a curve 
calculation. 
 
 

 
 
%macro trap(a,b,n, function); 
data f1; 
 do i = 0 to &n ; 
  if i = 0 then do; 
  x = &a ; 

  y = (( &b - &a ) / &n ) * ( &function / 
2 ); 
  output; 
  end; 
  else if i = &n then do; 
  x = &b ; 
  y = (( &b - &a ) / &n ) * ( &function / 
2 ); 
  output; 
  end; 
  else do; 
  x = ( &a + i * (( &b - &a) / &n ) ); 
  y = ((&b - &a) / &n) * &function; 
  output; 
  end; 
 end; 
run; 
   proc summary data=f1; 
     var y; 
     output out=p1 sum=areau; 
run; 
   proc print data=p1;run; 
%mend; 
 

 
 
The arguments of this macro are: 
 
      a:  lower limit of the integration, 
 
      b:  upper limit of the integration, 
 
      n:    number of intervals, 
 
     function: explicit functional form expression. 
 
The invocation example for this macro is as follows: 
 
 
   %trap(a=0, b=1, n=40, function= 1/x) 
 
 
 
 
APPLICATION AND COMPARISON 
 
A hypothetical clinical trial protocol is designed to 
examine the value of Brain Natriuretic Peptides (BNP) in 
the assessment of asymptomatic Left Ventricular 
Dysfunction (LVD) in a population at high risk of 
developing Congestive Heart Failure (CHF). The 
measurement of the test characteristics of BNP can be 
used in conjunction with a two-dimensional 
echocardiography for the detection of LVD.   

The patients in the study are required for the Left 
Ventricular Ejection Fraction (LVEF) data. Several 
different levels of LVEF are selected, which is then used 
for the definitions of LVD.  Levels of BNP are selected for 
LVD prediction purpose.  The cutpoints for LVEF are 
selected as less than 40%, less than 45%, less than 
50%, less than 55% and less than 60%.  Calculation of 
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test characteristics of chosen values of BNP for LVD is 
performed. The ROC curves can be constructed by 
varying the cutpoint that determines which estimated 
BNP probabilities are considered to predict the LVD.  The 
plots of these test characteristics data are shown in 
Figure 3. 
 
 

 
 
Figure 3. ROC Curves from Test Characteristic 
Data 
 
 
Estimation by Functional Form Method 
 
The same test characteristic data for Figure 3 plotting are 
used for parameter estimation by functional form method. 
The estimation results and ROC curves presentation are 
as follows: 
 
LVEF 
CUTP
OINT 

ESTIMAT
ED ���� 

ESTIMAT
ED ���� 

DISCRIMIN
ATION 
COEFFICIE
NT 

ESTIMATE
D AREA 
UNDER 
ROC 
CURVE  

< 40% 0.32887 0.91848 0.55003 0.77502 
< 45% 0.57710 0.78732 0.39625 0.69812 
< 50% 0.79896 0.86426 0.18826 0.59413 
< 55% 0.99739 0.72524 o.16067 0.58033 
< 60% 1.00000 0.92969 0.03644 0.51822 
Table 1. Estimation Results from Functional  
              Form Method 
 
The estimation results show that when the LVEF cutpoint 
increases the area under the ROC curve decreases. 
 
 
Estimation by Trapezoidal Rule with Functional 
Form Specified 
 
The same functional form and estimated parameters are 
used for the area calculation by trapezoidal rule.  
 

LVEF 
CUTP
OINT 

ESTIMAT
ED ���� 

ESTIMAT
ED ���� 

AREA 
UNDER 
ROTATED 
CURVE 

ESTIMATE
D AREA 
UNDER 
ROC 
CURVE  

< 40% 0.32887 0.91848 0.2256 0.7744 
< 45% 0.57710 0.78732 0.3020 0.6980 
< 50% 0.79896 0.86426 0.4059 0.5941 
< 55% 0.99739 0.72524 o.4197 0.5803 
< 60% 1.00000 0.92969 0.4818 0.5182 
Table 2. Estimation Results from Trapezoidal 
Rule with Fuctional Form Specified 
               
 
The area calculation results from both methods are 
shown in Tables 1 and 2. The calculation results are very 
close. 
 
 
 

 
 
Figure 4. Estimated ROC Curves from 
Functional Form Method 
 
 
 
Estimation by SAS Procedure LOGISTIC 
 
 
The procedure LOGISTIC of SAS software allows you to 
compute the ROC curve.  The OUTROC option in PROC 
LOGISTIC stores the needed measures, the variables’ 
sensitivity and specificity to a data set.  This data set can 
be used to construct the ROC curve by using the PLOT 
or GPLOT procedure and plotting for sensitivity 
(_SENSIT_) against 1 – specificity (_1MSPEC_). The 
area under the ROC curve, as determined by trapezoidal 
rule, is given by the statistic c in the "Association of 
Predicted Probabilities and Observed Responses" table.  
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The output from PROC LOGISTIC is shown in the 
following table: 
 

LVEF CUTPOINT STATISTIC C 
     < 40 %      0.716 
     < 45 %      0.710 
     < 50 %      0.588 
     < 55 %      0.586 
     < 60 %      0.518 

    Table 3. Estimation Results from LOGISTIC  
                  Method 
 
The ROC presentation from estimation by LOGISTIC is 
shown as follows: 
 
 

 
 
   Figure 5. ROC Curves from LOGISTIC Method 
 
 
Comparison of the computed area under the ROC curves 
by functional form specification method and the 
LOGISTIC procedure are as follows: 
 
LVEF 
CUTPOINT 

STATISTIC 
C 

ESTIMATED 
AREA 
FROM 
FUNCTION
AL FORM 

DIFFERENC
E 

  < 40 %   0.716   0.775 -0.059 
  < 45 %   0.710   0.698 0.012 
  < 50 %   0.588   0.594 -0.006 
  < 55 %   0.586   0.580 0.006 
  < 60 %   0.518   0.518 0 
Table 4. Comparison Estimation Results from  
Functional Form Method and LOGISTIC Method 
            
 
Table 4 shows that the differences between alternative 
methods are ranging from –0.059 to 0.012.  
 
 

CONCLUSION 

This paper takes a comprehensive approach in the 
selection of functional form to represent a ROC curve. 
The SAS NLIN procedure is used to estimate the 
parameters.   This functional form specification approach 
with non-linear estimation from NLINJ procedure makes 
best use of the SAS system capability of providing curve 
fitting and efficient parameter estimation. 

In summary, this approach 

* Provides  a better graphic presentation  by 
satisfying the mathematical properties 

* Provides a smoother empirical ROC curve 
with convexity of the  curve.  

* Provides a compact, efficient, and yet 
simple code for parameter estimation and 
area under a curve calculation. 

* Provides an estimation result that is close 
to other estimation methods. 
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