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Abstract

Version 9 targets the heavy-duty analytic procedures
in SAS® for high performance computing enhance-
ments. These enhancements encompass both al-
gorithmic improvements and modifications to exploit
multiprocessor hardware. This paper provides a sur-
vey of this development and the performance gains
obtained in several procedures in SAS/STAT and
Enterprise Miner. Some general scalability issues
are discussed and their practical implications in pro-
viding high performance scalable implementations in
the following SAS facilities are addressed:

• linear regression

• analysis of variance

• local regression

• robust regression

• logistic regression

Introduction

Current-generation servers are equipped with multi-
ple CPUs, vast amounts of RAM, and large-capacity,
high-bandwidth file systems. Achieving scalable per-
formance on these “big iron” boxes requires specially
designed software. In Version 6, SAS introduced the
SPDS (Scalable Performance Data Server) to exploit
such hardware for data services. With Version 9, SAS
is embarking on an evolutionary strategy to best ex-
ploit such hardware in a much broader class of SAS
solutions. Underlying this work is the new SSA (SAS
Scalable Architecture) that provides technologies to
take advantage both of multiple CPUs and multiple
I/O channels.

This paper describes how SSA services are being
leveraged to provide scalable performance in some
of the heavy-duty modeling procedures in SAS. Since
this work requires substantial modifications to the
legacy procedure code, several challenging problems

arise. In almost all cases, it is infeasible to get a job
to execute entirely in parallel, and this has some sig-
nificant scalability implications. These issues are ex-
plored in the first part of this paper, providing a ba-
sis for understanding the results of scalability experi-
ments presented in the second part.

Multithreading and Parallelization

Threads are parts of programs that execute sequen-
tially, and a program is multithreaded when it can cre-
ate more than one such sequential path simultane-
ously. A thread is active when the operating system
is free to schedule it for processing. The number
of threads that a program can create does not de-
pend on the number of processors on the hardware
on which it runs — multithreaded programs can exe-
cute on single-processor machines, and unthreaded
programs execute on multiprocessor boxes. If a pro-
gram creates more active threads than there are pro-
cessors available to execute these threads, then the
operating system allocates interleaved slices of time
to each thread on the available CPUs. For programs
to work correctly, the work done in an active thread
needs to be independent of the work that can be done
by any other simultaneously active thread. Ensuring
that this is the case is the programmer’s responsibil-
ity, and programs with this property are called thread-
safe.

On hardware with more than one CPU, multithreading
provides a mechanism for a program to exploit more
than one CPU simultaneously. By creating multiple
simultaneously active threads, the program enables
the operating system to schedule these threads con-
currently on more than one CPU. When this happens,
the program is said to be processing in parallel.

In order to maximize CPU utilization without incurring
unnecessary overhead, a multithreaded program will
often create the same number of active threads to
perform a task as there are processors available to
it. However, this is not always the best policy, and
sometimes creating more active threads than CPUs
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available allows a program to better balance the work
load across the CPUs or use other system resources
(such as I/O channels) to best advantage.

Scalability Measures and Ahmdal’s Law

There are many different notions of scalability. For ex-
ample, in a real time transactional database, you may
be interested in how the performance scales as the
number of simultaneous requests grows. Another no-
tion is that of problem scalability, which measures how
an algorithm scales as the size of the problem grows.
For example, you may be interested in knowing how
a sorting application behaves as the number of ob-
servations to be sorted increases. In both of these
cases, you are interested in scalability as the size of
the problem itself varies. In contrast, this paper fo-
cuses on how the time required to solve a fixed prob-
lem scales as the number of CPUs and/or I/O chan-
nels increases.

On multiprocessor machines, the total CPU time used
by all the CPUs is usually larger than the CPU time
used by the same job using a single processor.
However, for jobs that can execute mostly in parallel,
the time spent on the respective CPUs overlaps, and
so the real (wall clock) time to complete the job de-
creases even as the total CPU time increases. Since
the goal of parallel processing is to reduce the real
time a job requires, it makes sense to define mea-
sures of scalability in terms of real time.

There are two commonly used measures of scalabil-
ity. The first of these is “speedup,” which is simply
how fast a given job completes using p processors as
compared to using one processor. More precisely, if
tj denotes the real time required to execute a given
job on j parallel processors, the speedup Sp for a job
scheduled on p processors is defined as

Sp =
t1
tp

A second measure of scalability is “efficiency,” which
indicates how well a job is able to exploit the p CPUs
available. For example, if a job runs on a two proces-
sor machine but uses only one of the CPUs at any
time, then the efficiency of using the processors is
only 50%. More precisely, the efficiency percentage
Ep of a job on a p processor system is defined as

Ep = 100
Sp

p

If a job could be carried out completely in parallel
then you would expect tp = t1/p, in which case the
speedup Sp would be p and Ep would be 100%. This

ideal case is known as linear scalability. It is usually
impossible to subdivide a real job into work that can
execute completely in parallel. This fact can be ex-
pressed as

t1 = tU + tS

where tS is the fraction of the work that can be car-
ried out in parallel and tU is the rest of the work that
always keeps only a single processor busy. If you ig-
nore the overhead of scheduling and synchronizing
the work on the multiple CPUs and assume that the
parallelizable section scales perfectly, then

tp = tU +
tS

p

This relationship shows that there is an inherent limit
to scalability — no matter how many CPUs are avail-
able the job will always take at least tU . Let r = tS

t1
de-

note the parallelizable fraction of the job. Then some
algebra shows that in terms of r the ideal speedup is
given by

Sp =
p

(1− r)p + r

This last expression is known as Amdahl’s law. If
you know the parallelizable fraction for a given job,
you can use this law to give an upper bound for the
speedup you will obtain by running this job on a multi-
processor machine. Figure 1 illustrates this speedup
bound for a few values of the parallelizable fraction r.

Figure 1. Amdahl’s Law
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Scalability and Problem Size

Amdahl’s law illustrates the difficulty in achieving good
scalability for a particular job on powerful servers with
many CPUs. You can see in Figure 1 that even for
highly parallel jobs (r ≥ 0.90), the speedup soon falls
well behind the number of processors and asymptotes
at 1

1−r . So for example, if r = 0.9 then the speedup
will always be less than 10 no matter how many CPUs
are available. At first sight this appears to limit the
scalability you will observe on the larger servers avail-
able on the market today, which can have upwards
of 64 processors. However, this viewpoint ignores a
pertinent effect pointed out independently by Moler
(1987) and Gustafson (1988). They noted that as the
problem size grows, so often does the parallelizable
fraction r, and in fact for many jobs r goes to 1 as
the problem size increases. This potentially saves the
day for achieving scalability for the very large prob-
lems that can be tackled on these “Big Iron” boxes —
as you exploit the hardware’s large memory and disk
resources to tackle ever growing problem sizes, you
simultaneously are able to exploit the large number of
CPUs available.

At the other end of the problem size spectrum you will
often not see much speedup as you move beyond one
processor for “small” problems. This occurs not only
because the parallelizable code fraction is frequently
small in such cases, but also because the overhead
of creating and scheduling multiple threads starts to
overwhelm the benefits of the small amount of paral-
lel computation that is being done. In fact, to keep
performance from suffering for very small problems,
many multithreaded codes are designed to switch to
using unthreaded code paths in such cases, even
when multiple CPUs are available.

Baseline Speedups

The scalability measures discussed in the previous
two sections compare performance of programs ex-
ecuting in one thread with the corresponding pro-
grams executing in multiple threads. Multithreading of
SAS procedures requires significant modifications to
the existing legacy code. Usually these modifications
in and of themselves do not enhance performance.
However, in some cases, the multithreaded proce-
dures run significantly faster than the original legacy
code, even when a single thread is used on a one pro-
cessor machine. There are several reasons why this
happens.

Firstly, particularly in the area of I/O, new SAS ser-
vices have been developed that can be exploited to
improve performance even when used in a single ex-
ecution thread. For example, procedures can now ac-
cess data in blocks of multiple observations as op-

posed to one observation at a time, as in earlier re-
leases. For PROC REG jobs that have many obser-
vations and few variables, this change in data access
can yield about a two times speedup on some hard-
ware.

A second reason for seeing baseline speedups with
some of the new code has to do with space-time
tradeoffs. The legacy code that the new code re-
places was developed at a time when the memory
and disk space constraints were much tighter than
on current generation machines. The relatively vast
amounts of RAM and disk space on more modern
computers enable the new code to employ algorithms
that exploit the greater space available to improve per-
formance. Such performance gains are particularly
evident in PROC DMREG where some logistic re-
gressions run about three to four times faster than in
earlier releases, on single CPU boxes. These larger
memories have also been exploited in PROC GLM
and PROC LOESS, which now use data structures
that facilitate efficient memory access during some
time-critical computations.

Note that these baseline speedups are independent
of the scalable speedups obtained from using multi-
ple CPU boxes. Hence, if you run a job that uses
a thread-enabled SAS procedure on a multiple CPU
machine you may obtain a speedup over the Version
8 time that is better than linear. For comparison pur-
poses it is useful to define V9/V8 speedup for a job
scheduled on p processors as the number of times
faster the job runs in Version 9 as compared to the
same job in Version 8.

Performance Results

The following sections detail typical speedups that
you can obtain with some of the thread-enabled an-
alytic procedures running on multiple CPU platforms.
All these results were obtained on a Sun Enterprise
Midframe Server configured with 16 gigabytes of
RAM. For most of the tests, this server was config-
ured with eight 750 MHZ processors, but where ex-
plicitly noted, a configuration with twelve processors
was used.

Note that the results presented are for specific jobs.
You need to exercise caution if you try to draw gen-
eralized conclusions from these performance results.
Here are some factors that can dramatically affect the
scalable speedup of a particular job:

• Problem size. Not all invocations of a SAS pro-
cedure will have the same parallelizable code
fraction. As noted earlier, this fraction depends
not only on the details of the analysis, but also
on the problem size.
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• Problem shape. The code sections that con-
sume the time for a PROC invocation can vary
widely depending on the shape of the data be-
ing analyzed. Often for data with many obser-
vations and few variables, much of the time will
be spent doing I/O, so that achieving scalability
in these cases will depend on having scalable
I/O. At the other extreme, the same analysis
for data with fewer observations but many more
variables might require an insignificant time for
I/O but a great deal of time for computation.

• Options specified. Most SAS analytic proce-
dures can perform a variety of related analyses.
In some cases, these analyses will use code
paths that are not yet multithreaded.

• System load. Unless SAS is running on a dedi-
cated server, there will usually be other tasks on
a machine competing for system resources.

• Hardware. The scalability you will see
for a given job will vary with the hardware
used. Commonly, midrange servers are SMP
(Symmetric Multiprocessor) machines where all
the CPUs have equal access to a large shared
memory. As processing speeds outstrip mem-
ory access times, fast memory caches are used
to provide the CPUs with timely access to mem-
ory. More recently, to accommodate an ever
growing number of CPUs, NUMA (Non-Uniform
Memory Access) architectures have been intro-
duced. In NUMA architectures, the CPUs are
arranged in clusters with each cluster having
its own local memory. While each CPU can
“see all the memory,” memory access within a
cluster is significantly faster than across clus-
ters. There are complex interactions between
the topology of the CPU arrangements, cache
sizes, and user code. In some cases a job will
scale well on one vendor’s server but less well
on some other hardware architecture. SAS is
working closely with several hardware vendors
in an ongoing effort to learn how to best exploit
each vendor’s specific hardware.

Scalability in PROC LOESS

The LOESS procedure fits local regression models by
piecing together low-degree polynomial regressions
through local neighborhoods of the data, where the
number of points in each local neighborhood is con-
trolled by a smoothing parameter. Computing confi-
dence limits in a LOESS model requires significantly
more time than fitting the model itself, as modeling
the error distribution depends on examining the data
set as a whole. To help alleviate this bottleneck in
many LOESS jobs, these confidence limit computa-
tions were the first section of the PROC LOESS code

to be multithreaded. Furthermore the new code is it-
self substantially faster than the equivalent Version 8
code, even when no threading is used.

Figure 2 shows scalable speedups for fitting a LOESS
curve with confidence bands through data with 4,000
points. The smoothing parameter value in this test
was selected algorithmically requiring 18 different
LOESS models to be evaluated before the multi-
threaded computations for degrees of freedom were
done. The parallelizable fraction of this test is 0.95.
Notice how the observed speedups reflect Amdahl’s
law by falling increasingly short of linear scalability as
more CPUs are employed.

Figure 2. Scalable Speedup in PROC LOESS with
Automatic Smoothing Parameter Selection

Figure 3 shows the scalable speedup for the same
test except that in this case a single smoothing pa-
rameter value was specified. Hence, the unthreaded
section of the code involves only a single LOESS fit
before the multithreaded computations for degrees of
freedom were done. This gives a parallelizable frac-
tion of 0.99. Notice the improved scalability resulting
from the higher parallelizable fraction for the test re-
sults shown in Figure 3 as compared to Figure 2.
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Figure 3. Scalable Speedup in PROC LOESS with a
Specified Smoothing Parameter

As noted in the “Scalability and Problem Size” section
on page 3, the parallelizable fraction of a test usu-
ally grows with the size of the test. This is illustrated
in Figure 4, which shows how the parallelizable frac-
tion of the same LOESS test varies as the number of
observations increases. The corresponding scalable
speedups using eight CPUs are shown in Figure 5.
Notice how scalability improves as the problem size
grows.

Figure 4. Parallelizable Fractions of a LOESS test with
Problem Size

Figure 5. Scalable Speedup of a LOESS test with
Problem Size

Scalability in PROC GLM

The GLM procedure fits linear models involving clas-
sification effects. Even without interaction, each level
of a classification variable corresponds to one pa-
rameter in the model, so that many GLM analyses
often involve models with a large number of param-
eters. The multithreading enhancements to PROC
GLM have focused on alleviating the bottlenecks in fit-
ting such models. These bottlenecks include inverting
the SSCP matrix, deriving estimable linear functions,
and computing effect tests. Figure 6 shows the scal-
ability results obtained for one such test with 6,000
observations and four classification variables. The
model, which included main effects and some inter-
actions, had 2,000 parameters.
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Figure 6. Scalable Speedup in PROC GLM

Figure 6 reveals a surprising fact—the scalable
speedups obtained in this test are better than the
Amdahl upper bound and in fact are better than lin-
ear! The reason for this is probably due to improved
cache utilization in multiple threads. Due to the divi-
sion of work between multiple threads, each proces-
sor may need to reference smaller contiguous blocks
of memory than would be the case if the problem was
not subdivided. When these smaller memory blocks
are able to fit within each processor’s fast memory
cache, the number of expensive cache misses during
the computation can be dramatically reduced and this
produces the additional speed improvement. These
beneficial cache-related effects depend on the mem-
ory hierarchies of the hardware, the algorithm, and
the specific problem, and will not occur uniformly
across the spectrum of these parameters.

Scalability in PROC REG

The REG procedure fits linear regressions and pro-
duces many diagnostics about these fits. The time
spent in fitting such models is concentrated in three
tasks, namely I/O, forming the SSCP (sum of squares
and cross-products) matrix, and inverting this ma-
trix. All three of these tasks have been multithreaded,
making a broad spectrum of PROC REG jobs scal-
able. Even so, there are time-consuming sections of
some PROC REG jobs that have not yet been mul-
tithreaded. One example is the Furnival and Wilson
algorithm that PROC REG uses in all-subset based
selection methods.

In order to obtain parallel reads of SAS data sets,
you need to use one of the multithreaded partitioned
data access engines available in Version 9. An in-

line implementation of SPDS has been incorporated
as a new engine into BASE SAS software. Using
this SPDE (Scalable Performance Data Engine), SAS
data sets are stored in multiple partitions and each
partition can be accessed in a separate thread. True
parallel access occurs when these threads access
partitions that are serviced by independent I/O con-
trollers. However, even when multiple partitions are
accessed using a single I/O channel, read-ahead
buffering while other computational work is being
done can sometimes be used to effectively serve up
the data asynchronously in multiple threads.

Parallel data access is necessary for achieving scala-
bility for REG jobs with many observations and few
variables. As the number of variables grows, the
fraction of time PROC REG spends doing I/O rela-
tive to the rest of the work diminishes. For data sets
with many variables, some scalability can be obtained
even when data is accessed serially with the base en-
gine.

Figure 7 shows the scalability results of a PROC REG
job that performs stepwise variable selection among
500 variables for data with 50,000 observations. In
this test the data are accessed serially with the base
engine, and the parallelizable fraction of the job is
0.93.

Figure 7. Scalable Speedup in PROC REG with Serial
I/O and Many Variables

Figure 8 contrasts the V9/V8 speedup of the mul-
tithreaded code over the unthreaded code with the
scalable speedup. There is about a 2.5 baseline
speedup in this test, a result of improvements in one
of the linear algebra routines on this host. Note that
you will not obtain this baseline speedup on all plat-
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forms.

Figure 8. V9/V8 and Scalable Speedups in PROC REG
with Serial I/O and Many Variables

Figure 9 shows the scalability results of a PROC REG
job that fits a model with 20 regressors for data with
four million observations. In this test, almost all the
time is spent doing I/O and forming the SSCP ma-
trix. With parallel data input being obtained using
the SPDE, this highly scalable test has a paralleliz-
able fraction of about 0.999. In this test, the SUN
Enterprise Midframe Server was configured with 12
processors.

Figure 9. Scalable Speedups in PROC REG with
Parallel I/O and Few Variables

Scalability in PROC DMREG

The regression node in Enterprise Miner software
uses the DMREG procedure to fit a variety of linear
and nonlinear regression models. Each iteration of
the optimization methods used in fitting the nonlinear
models requires at least one pass through the data
to form the required gradient vectors and/or hessian
matrices. This work consumes the majority of time in
many DMREG jobs, and the multithreading enhance-
ments have focused on alleviating this bottleneck.

If you use one of the engines that can access
partitioned-data, the initial pass through the data is
multithreaded. To avoid having to scale the data and
handle missing values on every subsequent data ac-
cess, the design matrix, represented sparsely when
appropriate, is formed and partitioned into a num-
ber of utility files that can be accessed in separate
threads. This avoids unnecessary preprocessing du-
plication and facilitates multithreaded access to the
data during the optimization iterations, even when the
SAS data set itself is not partitioned.

Figure 10 shows the scalability results of a PROC
DMREG job that fits a logistic model to data with one
million observations. The target is binary and there
are 38 interval and two classification variables. In this
test, the SAS data set is stored and accessed with
the base engine, and hence the initial data pass and
SSCP formation are not multithreaded. The paralleliz-
able fraction for the test is 0.86.

Figure 10. Scalable Speedup in PROC DMREG with
Serial Data Access

Figure 11 contrasts the V9/V8 speedup with the scal-
able speedup. Note that you get a baseline speedup
of about 2.7 times in this test.
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Figure 11. V9/V8 and Scalable Speedups in PROC
DMREG with Serial Data Access

Figure 12 shows the scalability results of a PROC
DMREG job that fits a logistic model to data with
500,000 observations. The target is binary and there
are 50 continuous predictors and 15 classification
variables, each having 20 levels. The data are ac-
cessed in parallel by using the SPDE. In this test, the
SUN Enterprise Midframe Server was configured with
12 processors.

Figure 12. Scalable Speedup in PROC DMREG with
Parallel Data Access

Figure 13 contrasts the V9/V8 speedup with the scal-
able speedup. The V9 code exploits the sparsity of
the design matrix, contributing to the 3 times baseline

speedup.

Figure 13. V9/V8 and Scalable Speedups in PROC
DMREG with Parallel Data Access

Scalability in PROC ROBUSTREG

The ROBUSTREG procedure is a new SAS/STAT pro-
cedure in Version 9. It contains a variety of methods
for computing robust regression fits for data corrupted
with outliers. One of the more time-consuming meth-
ods available is the high-breakdown least trimmed
squares fit, and the initial multithreading work has fo-
cused on the main bottlenecks in this section of the
code. Future work will extend the multithreading to
the other methods available in PROC ROBUSTREG.

Figure 14 shows the scalable speedups in fit-
ting a least trimmed squares model using PROC
ROBUSTREG for data with 20 variables and 500,000
observations. In this case the parallelizable fraction of
the job is 0.87.
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Figure 14. Scalable Speedups in PROC ROBUSTREG

Conclusions

Ongoing development at SAS aims to make paral-
lel processing, parallel I/O, and algorithm enhance-
ments available to speed your time-to-solution. With
these evolutionary changes, expect to see perfor-
mance gains from selected applications using multi-
processor hardware. The scalability you will see will
vary with the type of analysis and problem size. As
your problem sizes grow, you will be able to increas-
ingly take advantage of additional CPUs. Scalability
results are also sensitive to specific hardware con-
figurations, making generalizations difficult. However,
experimentation indicates that you will get very good
scalability on hardware with up to four processors.
Less consistent scalability results have been obtained
in some initial tests on hardware with more than eight
processors.
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