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Abstract

Robust regression is an important tool for analyz-
ing data that are contaminated with outliers. It
can be used to detect outliers and to provide re-
sistant (stable) results in the presence of outliers.
This paper introduces the ROBUSTREG procedure,
which is experimental in SAS/STAT Version 9. The
ROBUSTREG procedure implements the most com-
monly used robust regression techniques. These
include M estimation (Huber, 1973), LTS estima-
tion (Rousseeuw, 1984), S estimation (Rousseeuw
and Yohai, 1984), and MM estimation (Yohai, 1987).
The paper will provide an overview of robust re-
gression methods, describe the syntax of PROC
ROBUSTREG, and illustrate the use of the procedure
to fit regression models and display outliers and lever-
age points. This paper will also discuss scalability of
the ROBUSTREG procedure for applications in data
cleansing and data mining.

Introduction

The main purpose of robust regression is to provide
resistant (stable) results in the presence of outliers.
In order to achieve this stability, robust regression lim-
its the influence of outliers. Historically, three classes
of problems have been addressed with robust regres-
sion techniques:

• problems with outliers in the y-direction (re-
sponse direction)

• problems with multivariate outliers in the covari-
ate space (i.e. outliers in the x-space, which are
also referred to as leverage points)

• problems with outliers in both the y-direction
and the x-space

Many methods have been developed for these prob-
lems. However, in statistical applications of outlier
detection and robust regression, the methods most
commonly used today are Huber M estimation, high
breakdown value estimation, and combinations of
these two methods. The ROBUSTREG procedure
provides four such methods: M estimation, LTS es-
timation, S estimation, and MM estimation.

1. M estimation was introduced by Huber (1973),
and it is the simplest approach both computa-
tionally and theoretically. Although it is not ro-
bust with respect to leverage points, it is still
used extensively in analyzing data for which
it can be assumed that the contamination is
mainly in the response direction.

2. Least Trimmed Squares (LTS) estimation is a
high breakdown value method introduced by
Rousseeuw (1984). The breakdown value is
a measure of the proportion of contamination
that a procedure can withstand and still main-
tain its robustness. The performance of this
method was improved by the FAST-LTS algo-
rithm of Rousseeuw and Van Driessen (1998).

3. S estimation is a high breakdown value method
introduced by Rousseeuw and Yohai (1984).
With the same breakdown value, it has a higher
statistical efficiency than LTS estimation.

4. MM estimation, introduced by Yohai (1987),
combines high breakdown value estimation and
M estimation. It has both the high breakdown
property and a higher statistical efficiency than
S estimation.

The following example introduces the basic usage of
the ROBUSTREG procedure.

Growth Study

Zaman, Rousseeuw, and Orhan (2001) used the fol-
lowing example to show how these robust techniques
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substantially improve the Ordinary Least Squares
(OLS) results for the growth study of De Long and
Summers.

De Long and Summers (1991) studied the national
growth of 61 countries from 1960 to 1985 using OLS.

data growth;
input country$ GDP LFG EQP NEQ GAP @@;
datalines;

Argentin 0.0089 0.0118 0.0214 0.2286 0.6079
Austria 0.0332 0.0014 0.0991 0.1349 0.5809
Belgium 0.0256 0.0061 0.0684 0.1653 0.4109
Bolivia 0.0124 0.0209 0.0167 0.1133 0.8634
Botswana 0.0676 0.0239 0.1310 0.1490 0.9474
Brazil 0.0437 0.0306 0.0646 0.1588 0.8498
Cameroon 0.0458 0.0169 0.0415 0.0885 0.9333
Canada 0.0169 0.0261 0.0771 0.1529 0.1783
Chile 0.0021 0.0216 0.0154 0.2846 0.5402
Colombia 0.0239 0.0266 0.0229 0.1553 0.7695
CostaRic 0.0121 0.0354 0.0433 0.1067 0.7043
Denmark 0.0187 0.0115 0.0688 0.1834 0.4079
Dominica 0.0199 0.0280 0.0321 0.1379 0.8293
Ecuador 0.0283 0.0274 0.0303 0.2097 0.8205
ElSalvad 0.0046 0.0316 0.0223 0.0577 0.8414
Ethiopia 0.0094 0.0206 0.0212 0.0288 0.9805
Finland 0.0301 0.0083 0.1206 0.2494 0.5589
France 0.0292 0.0089 0.0879 0.1767 0.4708
Germany 0.0259 0.0047 0.0890 0.1885 0.4585
Greece 0.0446 0.0044 0.0655 0.2245 0.7924
Guatemal 0.0149 0.0242 0.0384 0.0516 0.7885
Honduras 0.0148 0.0303 0.0446 0.0954 0.8850
HongKong 0.0484 0.0359 0.0767 0.1233 0.7471
India 0.0115 0.0170 0.0278 0.1448 0.9356
Indonesi 0.0345 0.0213 0.0221 0.1179 0.9243
Ireland 0.0288 0.0081 0.0814 0.1879 0.6457
Israel 0.0452 0.0305 0.1112 0.1788 0.6816
Italy 0.0362 0.0038 0.0683 0.1790 0.5441
IvoryCoa 0.0278 0.0274 0.0243 0.0957 0.9207
Jamaica 0.0055 0.0201 0.0609 0.1455 0.8229
Japan 0.0535 0.0117 0.1223 0.2464 0.7484
Kenya 0.0146 0.0346 0.0462 0.1268 0.9415
Korea 0.0479 0.0282 0.0557 0.1842 0.8807
Luxembou 0.0236 0.0064 0.0711 0.1944 0.2863
Madagasc -0.0102 0.0203 0.0219 0.0481 0.9217
Malawi 0.0153 0.0226 0.0361 0.0935 0.9628
Malaysia 0.0332 0.0316 0.0446 0.1878 0.7853
Mali 0.0044 0.0184 0.0433 0.0267 0.9478
Mexico 0.0198 0.0349 0.0273 0.1687 0.5921
Morocco 0.0243 0.0281 0.0260 0.0540 0.8405
Netherla 0.0231 0.0146 0.0778 0.1781 0.3605
Nigeria -0.0047 0.0283 0.0358 0.0842 0.8579
Norway 0.0260 0.0150 0.0701 0.2199 0.3755
Pakistan 0.0295 0.0258 0.0263 0.0880 0.9180
Panama 0.0295 0.0279 0.0388 0.2212 0.8015
Paraguay 0.0261 0.0299 0.0189 0.1011 0.8458
Peru 0.0107 0.0271 0.0267 0.0933 0.7406
Philippi 0.0179 0.0253 0.0445 0.0974 0.8747
Portugal 0.0318 0.0118 0.0729 0.1571 0.8033
Senegal -0.0011 0.0274 0.0193 0.0807 0.8884
Spain 0.0373 0.0069 0.0397 0.1305 0.6613
SriLanka 0.0137 0.0207 0.0138 0.1352 0.8555
Tanzania 0.0184 0.0276 0.0860 0.0940 0.9762
Thailand 0.0341 0.0278 0.0395 0.1412 0.9174
Tunisia 0.0279 0.0256 0.0428 0.0972 0.7838
U.K. 0.0189 0.0048 0.0694 0.1132 0.4307
U.S. 0.0133 0.0189 0.0762 0.1356 0.0000
Uruguay 0.0041 0.0052 0.0155 0.1154 0.5782
Venezuel 0.0120 0.0378 0.0340 0.0760 0.4974
Zambia -0.0110 0.0275 0.0702 0.2012 0.8695
Zimbabwe 0.0110 0.0309 0.0843 0.1257 0.8875
;

The regression equation they used is

GDP = β0+β1LFG+β2GAP+β3EQP+β4NEQ+ε,

where the response variable is the GDP growth
per worker (GDP ) and the regressors are the con-
stant term, labor force growth (LFG), relative GDP
gap (GAP ), equipment investment (EQP ), and non-
equipment investment (NEQ).

The following statements invoke the REG procedure
for the OLS analysis:

proc reg data=growth;
model GDP = LFG GAP EQP NEQ ;

run;

The OLS analysis of Figure 1 indicates that GAP and
EQP have a significant influence on GDP at the 5%
level.

The REG Procedure
Model: MODEL1

Dependent Variable: GDP

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -0.01430 0.01028 -1.39 0.1697
LFG 1 -0.02981 0.19838 -0.15 0.8811
GAP 1 0.02026 0.00917 2.21 0.0313
EQP 1 0.26538 0.06529 4.06 0.0002
NEQ 1 0.06236 0.03482 1.79 0.0787

Figure 1. OLS Estimates

The following statements invoke the ROBUSTREG
procedure with the default M estimation.

proc robustreg data=growth;
model GDP = LFG GAP EQP NEQ /

diagnostics leverage;
output out=robout r=resid sr=stdres;

run;

Figure 2 displays model information and summary
statistics for variables in the model. Figure 3 displays
the M estimates. Besides GAP and EQP , the robust
analysis also indicates NEQ has significant impact
on GDP . This new finding is explained by Figure 4,
which shows that Zambia, the sixtieth country in the
data, is an outlier. Figure 4 also displays leverage
points; however, there are no serious high leverage
points.

The ROBUSTREG Procedure

Model Information

Data Set MYLIB.GROWTH
Dependent Variable GDP
Number of Covariates 4
Number of Observations 61
Name of Method M-Estimation

Summary Statistics

Standard
Variable Q1 Median Q3 Mean Deviation

LFG 0.0118 0.0239 0.02805 0.02113 0.009794
GAP 0.57955 0.8015 0.88625 0.725777 0.21807
EQP 0.0265 0.0433 0.072 0.052325 0.029622
NEQ 0.09555 0.1356 0.1812 0.139856 0.056966
GDP 0.01205 0.0231 0.03095 0.022384 0.015516

Summary Statistics

Variable MAD

LFG 0.009489
GAP 0.177764
EQP 0.032469
NEQ 0.062418
GDP 0.014974
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Figure 2. Model Fitting Information and Summary
Statistics

The ROBUSTREG Procedure

Parameter Estimates

Standard 95% Confidence Chi-
Parameter DF Estimate Error Limits Square

Intercept 1 -0.0247 0.0097 -0.0437 -0.0058 6.53
LFG 1 0.1040 0.1867 -0.2619 0.4699 0.31
GAP 1 0.0250 0.0086 0.0080 0.0419 8.36
EQP 1 0.2968 0.0614 0.1764 0.4172 23.33
NEQ 1 0.0885 0.0328 0.0242 0.1527 7.29
Scale 1 0.0099

Parameter Estimates

Parameter Pr > ChiSq

Intercept 0.0106
LFG 0.5775
GAP 0.0038
EQP <.0001
NEQ 0.0069
Scale

Figure 3. M estimates

The ROBUSTREG Procedure

Diagnostics

Robust
Mahalanobis MCD Robust

Obs Distance Distance Leverage Residual Outlier

1 2.6083 4.0639 * -0.9424
5 3.4351 6.7391 * 1.4200
8 3.1876 4.6843 * -0.1972
9 3.6752 5.0599 * -1.8784

17 2.6024 3.8186 * -1.7971
23 2.1225 3.8238 * 1.7161
27 2.6461 5.0336 * 0.0909
31 2.9179 4.7140 * 0.0216
53 2.2600 4.3193 * -1.8082
57 3.8701 5.4874 * 0.1448
58 2.5953 3.9671 * -0.0978
59 2.9239 4.1663 * 0.3573
60 1.8562 2.7135 -4.9798 *
61 1.9634 3.9128 * -2.5959

Diagnostics Profile

Name Percentage Cutoff

Outlier 0.0164 3.0000
Leverage 0.2131 3.3382

Figure 4. Diagnostics

The following statements invoke the ROBUSTREG
procedure with LTS estimation, which was used by
Zaman, Rousseeuw, and Orhan (2001). The result is
consistent with that of M estimation.

proc robustreg method=lts(h=33) fwls
data=growth;

model GDP = LFG GAP EQP NEQ /
diagnostics leverage ;

output out=robout r=resid sr=stdres;
run;

Figure 5 displays the LTS estimates.

The ROBUSTREG Procedure

LTS Profile

Total Number of Observations 61
Number of Squares Minimized 33
Number of Coefficients 5
Highest Possible Breakdown Value 0.4590

LTS Parameter Estimates

Parameter DF Estimate

Intercept 1 -0.0249
LFG 1 0.1123
GAP 1 0.0214
EQP 1 0.2669
NEQ 1 0.1110
Scale 0.0076
WScale 0.0109

Figure 5. LTS estimates

Figure 6 displays outlier and leverage point diagnos-
tics based on the LTS estimates. Figure 7 displays the
final weighted least square estimates, which are iden-
tical to those reported in Zaman, Rousseeuw, and
Orhan (2001).

The ROBUSTREG Procedure

Diagnostics

Robust
Mahalanobis MCD Robust

Obs Distance Distance Leverage Residual Outlier

1 2.6083 4.0639 * -1.0715
5 3.4351 6.7391 * 1.6574
8 3.1876 4.6843 * -0.2324
9 3.6752 5.0599 * -2.0896

17 2.6024 3.8186 * -1.6367
23 2.1225 3.8238 * 1.7570
27 2.6461 5.0336 * 0.2334
31 2.9179 4.7140 * 0.0971
53 2.2600 4.3193 * -1.2978
57 3.8701 5.4874 * 0.0605
58 2.5953 3.9671 * -0.0857
59 2.9239 4.1663 * 0.4113
60 1.8562 2.7135 -4.4984 *
61 1.9634 3.9128 * -2.1201

Diagnostics Profile

Name Percentage Cutoff

Outlier 0.0164 3.0000
Leverage 0.2131 3.3382

Rsquare for
LTS-estimation

Rsquare 0.7417678684

Figure 6. Diagnostics and LTS-Rsquare
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The ROBUSTREG Procedure

Parameter Estimates for Final Weighted LS

Standard 95% Confidence Chi-
Parameter DF Estimate Error Limits Square

Intercept 1 -0.0222 0.0093 -0.0403 -0.0041 5.75
LFG 1 0.0446 0.1755 -0.2995 0.3886 0.06
GAP 1 0.0245 0.0081 0.0085 0.0404 9.05
EQP 1 0.2824 0.0576 0.1695 0.3953 24.03
NEQ 1 0.0849 0.0311 0.0239 0.1460 7.43
Scale 0.0115

Parameter Estimates
for Final Weighted

LS

Parameter Pr > ChiSq

Intercept 0.0165
LFG 0.7995
GAP 0.0026
EQP <.0001
NEQ 0.0064
Scale

Figure 7. Final Weighted LS estimates

The following section provides some theoretical back-
ground for robust estimates.

Robust Estimates

Let X = (xij) denote an n×p matrix, y = (y1, ..., yn)T

a given n-vector of responses, and θ = (θ1, ..., θp)T an
unknown p-vector of parameters or coefficients whose
components have to be estimated. The matrix X
is called a design matrix. Consider the usual linear
model

y = Xθ + e

where e = (e1, ..., en)T is an n-vector of unknown er-
rors. It is assumed that (for given X) the components
ei of e are independent and identically distributed ac-
cording to a distribution L(·/σ), where σ is a scale pa-
rameter (usually unknown). Often L(·/σ) = Φ(·), the
standard normal distribution with density φ(s) = (1/√

2π)exp(−s2/2). r = (r1, ..., rn)T denotes the n-
vector of residuals for a given value of θ and by xTi
the i-th row of the matrix X.

The Ordinary Least Squares (OLS) estimate θ̂LS of θ
is obtained as the solution of the problem

min
θ
QLS(θ)

where QLS(θ) = 1
2

∑n
i=1 r

2
i .

Taking the partial derivatives of QLS with respect to
the components of θ and setting them equal to zero
yields the normal equations

XXT θ = XT y

If the rank(X) is equal to p, the solution for θ is

θ̂LS = (XTX)−1XT y

The least squares estimate is the maximum likelihood
estimate when L(·/σ) = Φ(·). In this case the usual
estimate of the scale parameter σ is

σ̂LS =

√
1

(n− p)
QLS(θ̂)

As shown in the growth study, the OLS estimate can
be significantly influenced by a single outlier. To
bound the influence of outliers, Huber (1973) intro-
duced the M estimate.

Huber-type Estimates

Instead of minimizing a sum of squares, a Huber-type
M estimator θ̂M of θ minimizes a sum of less rapidly
increasing functions of the residuals:

Q(θ) =
n∑
i=1

ρ(
ri
σ

)

where r = y − Xθ. For the OLS estimate, ρ is the
quadratic function.

If σ is known, by taking derivatives with respect to θ,
θ̂M is also a solution of the system of p equations:

n∑
i=1

ψ(
ri
σ

)xij = 0, j = 1, ..., p

where ψ = ρ′. If ρ is convex, θ̂M is the unique solution.

PROC ROBUSTREG solves this system by using it-
eratively reweighted least squares (IRLS). The weight
function w(x) is defined as

w(x) =
ψ(x)
x

PROC ROBUSTREG provides ten kinds of weight
functions (corresponding to ten ρ-functions) through
the WEIGHTFUNCTION= option in the MODEL state-
ment. The scale parameter σ can be specified using
the SCALE= option in the PROC statement.

If σ is unknown, then the function

Q(θ, σ) =
n∑
i=1

[ρ(
ri
σ

) + a]σ
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is minimized with a > 0 over θ and σ by alternately
improving θ̂ in a location step and σ̂ in a scale step.

For the scale step, three options can be used to esti-
mate σ:

1. METHOD=M(SCALE=HUBER<(D=d)>) This
option obtains σ̂ by the iteration

(σ̂(m+1))2 =
1
nh

n∑
i=1

χd(
ri
σ̂(m)

)(σ̂(m))2,

where

χd(x) =
{
x2/2 if |x| < d
d2/2 otherwise

is the Huber function and h = n−p
n (d2 + (1 −

d2)Φ(d)− .5−d
√

2πe−
1
2d

2
) is the Huber constant

(refer to Huber 1981, p. 179). You can specify d
with the D= option. By default, d = 2.5.

2. METHOD=M(SCALE=TUKEY<(D=d)>) This
option obtains σ̂ by solving the supplementary
equation

1
n− p

n∑
i=1

χd(
ri
σ

) = β

where

χd(x) =
{

3x2

d2 − 3x4

d4 + x6

d6 if |x| < d
1 otherwise,

χ
′

d being Tukey’s Biweight function, and β =∫
χd(s)dΦ(s) is the constant such that the so-

lution σ̂ is asymptotically consistent when L(·/
σ) = Φ(·) (refer to Hampel et al. 1986, p. 149).
You can specify d by the D= option. By default,
d = 2.5.

3. METHOD=M(SCALE=MED) This option obtains
σ̂ by the iteration

σ̂(m+1) = medni=1|yi − xTi θ̂
(m)|/β0

where β0 = Φ−1(.75) is the constant such that
the solution σ̂ is asymptotically consistent when
L(·/σ) = Φ(·) (refer to Hampel et al. 1986, p.
312).

SCALE = MED is the default.

High Breakdown Value Estimates

If the data are contaminated in the x-space, M estima-
tion does not do well. This can be shown using a data
set created by Hawkins, Bradu, and Kass (1984).

data hbk;
input index$ x1 x2 x3 y @@;
datalines;

1 10.1 19.6 28.3 9.7 39 2.1 0.0 1.2 -0.7
2 9.5 20.5 28.9 10.1 40 0.5 2.0 1.2 -0.5
3 10.7 20.2 31.0 10.3 41 3.4 1.6 2.9 -0.1
4 9.9 21.5 31.7 9.5 42 0.3 1.0 2.7 -0.7
5 10.3 21.1 31.1 10.0 43 0.1 3.3 0.9 0.6
6 10.8 20.4 29.2 10.0 44 1.8 0.5 3.2 -0.7
7 10.5 20.9 29.1 10.8 45 1.9 0.1 0.6 -0.5
8 9.9 19.6 28.8 10.3 46 1.8 0.5 3.0 -0.4
9 9.7 20.7 31.0 9.6 47 3.0 0.1 0.8 -0.9
10 9.3 19.7 30.3 9.9 48 3.1 1.6 3.0 0.1
11 11.0 24.0 35.0 -0.2 49 3.1 2.5 1.9 0.9
12 12.0 23.0 37.0 -0.4 50 2.1 2.8 2.9 -0.4
13 12.0 26.0 34.0 0.7 51 2.3 1.5 0.4 0.7
14 11.0 34.0 34.0 0.1 52 3.3 0.6 1.2 -0.5
15 3.4 2.9 2.1 -0.4 53 0.3 0.4 3.3 0.7
16 3.1 2.2 0.3 0.6 54 1.1 3.0 0.3 0.7
17 0.0 1.6 0.2 -0.2 55 0.5 2.4 0.9 0.0
18 2.3 1.6 2.0 0.0 56 1.8 3.2 0.9 0.1
19 0.8 2.9 1.6 0.1 57 1.8 0.7 0.7 0.7
20 3.1 3.4 2.2 0.4 58 2.4 3.4 1.5 -0.1
21 2.6 2.2 1.9 0.9 59 1.6 2.1 3.0 -0.3
22 0.4 3.2 1.9 0.3 60 0.3 1.5 3.3 -0.9
23 2.0 2.3 0.8 -0.8 61 0.4 3.4 3.0 -0.3
24 1.3 2.3 0.5 0.7 62 0.9 0.1 0.3 0.6
25 1.0 0.0 0.4 -0.3 63 1.1 2.7 0.2 -0.3
26 0.9 3.3 2.5 -0.8 64 2.8 3.0 2.9 -0.5
27 3.3 2.5 2.9 -0.7 65 2.0 0.7 2.7 0.6
28 1.8 0.8 2.0 0.3 66 0.2 1.8 0.8 -0.9
29 1.2 0.9 0.8 0.3 67 1.6 2.0 1.2 -0.7
30 1.2 0.7 3.4 -0.3 68 0.1 0.0 1.1 0.6
31 3.1 1.4 1.0 0.0 69 2.0 0.6 0.3 0.2
32 0.5 2.4 0.3 -0.4 70 1.0 2.2 2.9 0.7
33 1.5 3.1 1.5 -0.6 71 2.2 2.5 2.3 0.2
34 0.4 0.0 0.7 -0.7 72 0.6 2.0 1.5 -0.2
35 3.1 2.4 3.0 0.3 73 0.3 1.7 2.2 0.4
36 1.1 2.2 2.7 -1.0 74 0.0 2.2 1.6 -0.9
37 0.1 3.0 2.6 -0.6 75 0.3 0.4 2.6 0.2
38 1.5 1.2 0.2 0.9
;

Both OLS estimation and M estimation suggest that
observations 11 to 14 are serious outliers. However,
these four observations were generated from the un-
derlying model and observations 1 to 10 were con-
taminated. The reason that OLS estimation and M
estimation do not pick up the bad observations is that
they cannot distinguish good leverage points (obser-
vations 11 to 14) from bad leverage points (observa-
tions 1 to 10). In such cases, high breakdown value
estimates are needed.

LTS estimate

The least trimmed squares (LTS) estimate proposed
by Rousseeuw (1984) is defined as the p-vector

θ̂LTS = arg min
θ
QLTS(θ)

where

QLTS(θ) =
h∑
i=1

r2(i)

r2(1) ≤ r2(2) ≤ ... ≤ r2(n) are the ordered squared resid-

uals r2i = (yi − xTi θ)
2, i = 1, ..., n, and h is defined in

the range n
2 + 1 ≤ h ≤ 3n+p+1

4 .

You can specify the parameter h with the option H= in
the PROC statement. By default, h = [(3n+p+1)/4].
The breakdown value is n−h

n for the LTS estimate.
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LMS estimate

The least median of squares (LMS) estimate is de-
fined as the p-vector

θ̂LMS = arg min
θ
QLMS(θ)

where

QLMS(θ) = r2(h)

r2(1) ≤ r2(2) ≤ ... ≤ r2(n) are the ordered squared resid-

uals r2i = (yi − xTi θ)
2, i = 1, ..., n, and h is defined in

the range n
2 + 1 ≤ h ≤ 3n+p+1

4 .

The breakdown value for the LMS estimate is also
n−h
n . However the LTS estimate has several advan-

tages over the LMS estimate. Its objective function is
smoother, making the LTS estimate less “jumpy” (i.e.
sensitive to local effects) than the LMS estimate. Its
statistical efficiency is better, because the LTS esti-
mate is asymptotically normal whereas the LMS esti-
mate has a lower convergence rate (Rousseeuw and
Leroy (1987)). Another important advantage is that,
using the FAST-LTS algorithm by Rousseeuw and Van
Driessen (1998), the LTS estimate takes less comput-
ing time and is more accurate.

The ROBUSTREG procedure computes LTS esti-
mates. The estimates are mainly used to detect out-
liers in the data, which are then downweighted in the
resulting weighted least square regression.

S estimate

The S estimate proposed by Rousseeuw and Yohai
(1984) is defined as the p-vector

θ̂S = arg min
θ
S(θ)

where the dispersion S(θ) is the solution of

1
n− p

n∑
i=1

χ(
yi − xTi θ

S
) = β

β is set to
∫
χ(s)dΦ(s) such that θ̂S and S(θ̂S) are

asymptotically consistent estimates of θ and σ for the
Gaussian regression model. The breakdown value of
the S estimate is

β

sups χ(s)

PROC ROBUSTREG provides two kinds of functions
for χ:

Tukey : Specified with the option CHIF=TUKEY.

χk0(s) ={
3( sk0 )2 − 3( sk0 )4 + ( sk0 )6, if |s| ≤ k0

1 otherwise

The turning constant k0 controls the breakdown value
and efficiency of the S estimate. By specifying the
efficiency using the EFF= option, you can determine
the corresponding k0. The default k0 is 2.9366 such
that the breakdown value of the S estimate is 0.25
with a corresponding asymptotic efficiency for the
Gaussian model of 75.9%.

Yohai : Specified with the option CHIF=YOHAI.

χk0(s) =
s2

2 if |s| ≤ 2k0

k2
0[b0 + b1( sk0 )2 + b2( sk0 )4

+b3( sk0 )6 + b4( sk0 )8] if 2k0 < |s| ≤ 3k0

3.25k2
0 if |s| > 3k0

where b0 = 1.792, b1 = −0.972, b2 = 0.432, b3 =
−0.052, and b4 = 0.002. By specifying the efficiency
using the EFF= option, you can determine the corre-
sponding k0. By default, k0 is set to 0.7405 such that
the breakdown value of the S estimate is 0.25 with a
corresponding asymptotic efficiency for the Gaussian
model of 72.7%.

The following statements invoke the ROBUSTREG
procedure with the LTS estimation method for the hbk
data.

proc robustreg data=hbk fwls
method=lts;

model y = x1 x2 x3/
diagnostics leverage;

id index;
run;

Figure 8 displays the model fitting information and
summary statistics for the response variable and in-
dependent covariates.

Figure 9 displays information about the LTS fit, which
includes the breakdown value of the LTS estimate. In
this example, the LTS estimate minimizes the sum of
40 smallest squares of residuals, thus it can still pick
up the right model if the remaining 35 observations
are contaminated.

6
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The ROBUSTREG Procedure

Model Information

Data Set WORK.HBK
Dependent Variable y
Number of Covariates 3
Number of Observations 75
Name of Method LTS Estimation

Summary Statistics

Standard
Variable Q1 Median Q3 Mean Deviation

x1 0.8 1.8 3.1 3.206667 3.652631
x2 1 2.2 3.3 5.597333 8.239112
x3 0.9 2.1 3 7.230667 11.74031
y -0.5 0.1 0.7 1.278667 3.492822

Summary Statistics

Variable MAD

x1 1.927383
x2 1.630862
x3 1.779123
y 0.889561

Figure 8. Model Fitting Information and Summary
Statistics

The ROBUSTREG Procedure

LTS Profile

Total Number of Observations 75
Number of Squares Minimized 57
Number of Coefficients 4
Highest Possible Breakdown Value 0.2533

Figure 9. LTS Profile

Figure 10 displays parameter estimates for covariates
and scale. Two robust estimates of the scale pa-
rameter are displayed. The weighted scale estimate
(Wscale) is a more efficient estimate of the scale pa-
rameter.

The ROBUSTREG Procedure

LTS Parameter Estimates

Parameter DF Estimate

Intercept 1 -0.3431
x1 1 0.0901
x2 1 0.0703
x3 1 -0.0731
Scale 0.7451
WScale 0.5749

Figure 10. LTS Parameter Estimates

Figure 11 displays outlier and leverage point diagnos-
tics. The ID variable index is used to identify the ob-
servations. The first ten observations are identified
as outliers and observations 11 to 14 are identified as
good leverage points.

The ROBUSTREG Procedure

Diagnostics

Robust
Mahalanobis MCD Robust

Obs index Distance Distance Leverage Residual Outlier

1 1 1.9168 29.4424 * 17.0868 *
3 2 1.8558 30.2054 * 17.8428 *
5 3 2.3137 31.8909 * 18.3063 *
7 4 2.2297 32.8621 * 16.9702 *
9 5 2.1001 32.2778 * 17.7498 *

11 6 2.1462 30.5892 * 17.5155 *
13 7 2.0105 30.6807 * 18.8801 *
15 8 1.9193 29.7994 * 18.2253 *
17 9 2.2212 31.9537 * 17.1843 *
19 10 2.3335 30.9429 * 17.8021 *
21 11 2.4465 36.6384 * 0.0406
23 12 3.1083 37.9552 * -0.0874
25 13 2.6624 36.9175 * 1.0776
27 14 6.3816 41.0914 * -0.7875

Diagnostics Profile

Name Percentage Cutoff

Outlier 0.1333 3.0000
Leverage 0.1867 3.0575

Figure 11. Diagnostics Profile

Figure 12 displays the final weighted LS estimates.
These estimates are OLS estimates computed after
deleting the detected outliers.

The ROBUSTREG Procedure

Parameter Estimates for Final Weighted LS

Standard 95% Confidence Chi-
Parameter DF Estimate Error Limits Square

Intercept 1 -0.1805 0.0968 -0.3702 0.0093 3.47
x1 1 0.0814 0.0618 -0.0397 0.2025 1.73
x2 1 0.0399 0.0375 -0.0336 0.1134 1.13
x3 1 -0.0517 0.0328 -0.1159 0.0126 2.48
Scale 0.5165

Parameter Estimates
for Final Weighted

LS

Parameter Pr > ChiSq

Intercept 0.0623
x1 0.1879
x2 0.2875
x3 0.1150
Scale

Figure 12. Final Weighted LS Estimates

MM estimate

MM estimation is a combination of high breakdown
value estimation and efficient estimation, which was
introduced by Yohai (1987). It has three steps:

1. Compute an initial (consistent) high break-
down value estimate θ̂

′
. PROC ROBUSTREG

provides two kinds of estimates as the initial
estimate, the LTS estimate and the S estimate.
By default, PROC ROBUSTREG uses the LTS

7
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estimate because of its speed, efficiency, and
high breakdown value. The breakdown value
of the final MM estimate is decided by the
breakdown value of the initial LTS estimate and
the constant k0 in the CHI function. To use the
S estimate as the initial estimate, you need
to specify the INITEST=S option in the PROC
statement. In this case, the breakdown value
of the final MM estimate is decided only by
the constant k0. Instead of computing the LTS
estimate or the S estimate as initial estimates,
you can also specify the initial estimate using
the INEST= option in the PROC statement.

2. Find σ̂
′

such that

1
n− p

n∑
i=1

χ(
yi − xTi θ̂

′

σ̂′ ) = β

where β =
∫
χ(s)dΦ(s).

PROC ROBUSTREG provides two kinds of
functions for χ:

Tukey : Specified with the option CHIF=TUKEY.

χk0(s) ={
3( sk0 )2 − 3( sk0 )4 + ( sk0 )6, if |s| ≤ k0

1 otherwise

where k0 can be specified by the K0= option.
The default k0 is 2.9366 such that the asymptoti-
cally consistent scale estimate σ̂

′
has the break-

down value of 25%.

Yohai : Specified with the option CHIF=YOHAI.

χk0(s) =
s2

2 if |s| ≤ 2k0

k2
0[b0 + b1( sk0 )2 + b2( sk0 )4

+b3( sk0 )6 + b4( sk0 )8] if 2k0 < |s| ≤ 3k0

3.25k2
0 if |s| > 3k0

where b0 = 1.792, b1 = −0.972, b2 = 0.432, b3 =
−0.052, and b4 = 0.002. k0 can be specified with
the K0= option. The default k0 = .7405 such that
the asymptotically consistent scale estimate σ̂

′

has the breakdown value of 25%.

3. Find a local minimum θ̂MM of

QMM =
n∑
i=1

ρ(
yi − xTi θ

σ̂′ )

such that QMM (θ̂MM ) ≤ QMM (θ̂
′
). The al-

gorithm for M estimate is used here. PROC
ROBUSTREG provides two kinds of functions

for ρ corresponding to the two kinds of χ func-
tions, respectively.

Tukey : With the option CHIF=TUKEY,

ρ(s) = χk1(s) ={
3( sk1 )2 − 3( sk1 )4 + ( sk1 )6, if |s| ≤ k1

1 otherwise

where k1 can be specified by the K1= option.
The default k1 is 3.440 such that the MM
estimate has 85% asymptotic efficiency with the
Gaussian distribution.

Yohai : With the option CHIF=YOHAI,

ρ(s) = χk1(s) =
s2

2 if |s| ≤ 2k1

k2
1[b0 + b1( sk1 )2 + b2( sk1 )4

+b3( sk1 )6 + b4( sk1 )8] if 2k1 < |s| ≤ 3k1

3.25k2
1 if |s| > 3k1

where k1 can be specified by the K1= option.
The default k1 is 0.868 such that the MM es-
timate has 85% asymptotic efficiency with the
Gaussian distribution.

In the following sections, robust diagnostic and infer-
ence are introduced.

Resistant Diagnostic and Outlier
Detection

Robust Distance

The Robust Distance is defined as

RD(xi) = [(xi − T (X))TC(X)−1(Xi − T (X))]1/2,

where T (X) and C(x) are the robust location
and scatter matrix for the multivariates. PROC
ROBUSTREG implements the FAST-MCD algorithm
of Rousseeuw and Van Driessen (1999) for comput-
ing these robust multivariate estimates.

High Leverage Points

Let C(p) =
√
χ2
p;1−α be the cutoff value. The variable

LEVERAGE is defined as

LEVERAGE =
{

0 if RD(xi) ≤ C(p)
1 otherwise

8
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Outliers

Residuals ri, i = 1, ..., n based on the described ro-
bust estimates are used to detect outliers in the re-
sponse direction. The variable OUTLIER is defined
as

OUTLIER =
{

0 if |r| ≤ kσ
1 otherwise

An ODS table called DIAGNOSTICS provides the
summary of these two variables if you specify
the DIAGNOSTICS and LEVERAGE options in the
MODEL statement. As an example, review the syntax
for the MODEL statement used by the growth study:

model GDP = LFG GAP EQP NEQ /
diagnostics leverage;

If you do not specify the LEVERAGE option, only
the OUTLIER variable is included in the ODS table.
However, the DIAGNOSTICS option is required if you
specify the LEVERAGE option.

Robust Inference

Robust Measure of Goodness-of-Fit and Model
Selection

The robust version of R2 is defined as

R2 =
∑
ρ(yi−µ̂

ŝ )−
∑
ρ(yi−xT

i θ̂
ŝ )∑

ρ(yi−µ̂
ŝ )

and the robust deviance is defined as the optimal
value of the objective function on the σ2-scale:

D = 2(ŝ)2
∑

ρ(
yi − xTi θ̂

ŝ
)

where ρ is the objective function for the robust esti-
mate, µ̂ is the robust location estimator, and ŝ is the
robust scale estimator in the full model.

The Information Criterion is a powerful tool for model
selection. The counterpart of the Akaike (1974) AIC
criterion for robust regression is defined as

AICR = 2
n∑
i=1

ρ(ri:p) + αp

where ri:p = (yi − xTi θ̂)/σ̂, σ̂ is some robust esti-
mate of σ, and θ̂ is the robust estimator of θ with a
p-dimensional design matrix.

As in AIC, α is the weight of the penalty for dimen-
sions. PROC ROBUSTREG uses α = 2Eψ2/Eψ

′

(Ronchetti, 1985) and estimates it using the final ro-
bust residuals.

The robust version of the Schwarz information criteria
(BIC) is defined as

BICR = 2
n∑
i=1

ρ(ri:p) + p log(n)

For the growth study, PROC ROBUSTREG produces
the following goodness-of-fit table:

The ROBUSTREG Procedure

Goodness-of-Fit
Statistics for

M-estimation

Statistic Value

Rsquare 0.3177714766
AICR 80.213370744
BICR 91.50951378
Deviance 0.0070081124

Figure 13. Goodness-of-Fit

Asymptotic Covariance and Confidence Intervals

The following three estimators of the asymptotic co-
variance of the robust estimator are available in
PROC ROBUSTREG:

H1: K2 [1/(n− p)]
∑

(ψ(ri))2

[(1/n)
∑

(ψ′(ri))]2
(XTX)−1

H2: K
[1/(n− p)]

∑
(ψ(ri))2

[(1/n)
∑

(ψ′(ri))]
W−1

H3: K−1 1
(n− p)

∑
(ψ(ri))2W−1(XTX)W−1

where K = 1 + p
n
var(ψ

′
)

(Eψ′ )2
is the correction factor and

Wjk =
∑
ψ′(ri)xijxik. Refer to Huber (1981, p. 173)

for more details.

Linear Tests

Two tests are available in PROC ROBUSTREG for the
canonical linear hypothesis

H0 : θj = 0, j = q + 1, ..., p

They are briefly described as follows. Refer to
Hampel et al. (1986, Chapter 7) for details.

9
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ρ-test:
The robust estimators in the full and reduced model
are θ̂0 ∈ Ω0 and θ̂1 ∈ Ω1, respectively. Let

Q0 = Q(θ̂0) = min{Q(θ)|θ ∈ Ω0},
Q1 = Q(θ̂1) = min{Q(θ)|θ ∈ Ω1},

with Q =
∑n
i=1 ρ(

ri

σ ).

The robust F test is based on the test statistic

S2
n =

2
p− q

[Q1 −Q0].

Asymptotically S2
n ∼ λχ2

p−q under H0, where the stan-

dardization factor is λ =
∫
ψ2(s)dΦ(s)/

∫
ψ

′
(s)dΦ(s)

and Φ is the c.d.f. of the standard normal distribution.
Large values of S2

n are significant. This robust F test
is a special case of the general τ -test of Hampel et al.
(1986, Section 7.2).

R2
n-test:

The test statistic for the R2
n-test is defined as

R2
n = n(θ̂q+1, ..., θ̂p)H−1

22 (θ̂q+1, ..., θ̂p)T

where H22 is the (p − q) × (p − q) lower right block
of the asymptotic covariance matrix of the M estimate
θ̂M of θ in a p-parameter linear model.

Under H0, R2
n has an asymptotic χ2 distribution with

p − q degrees of freedom. Large absolute values of
R2
n are significant.

Robust ANOVA

The classical analysis of variance (ANOVA) technique
based on least squares is safe to use if the un-
derlying experimental errors are normally distributed.
However, data often contain outliers due to recording
or other errors. In other cases, extreme responses
might be produced by setting control variables in the
experiments to extremes. It is important to distin-
guish these extreme points and determine whether
they are outliers or important extreme cases. The
ROBUSTREG procedure can be used for robust anal-
ysis of variance based on M estimation. Since the
independent variables are well designed in the exper-
iments, there are no high leverage points and M esti-
mation is suitable.

The following example shows how to use the
ROBUSTREG procedure for robust ANOVA.

In an experiment studying the effects of two suc-
cessive treatments (T1, T2) on the recovery time of

mice with certain disease, 16 mice were randomly as-
signed into four groups for the four different combina-
tions of the treatments. The recovery times (in hours)
were recorded.

data recover;
input id T1 $ T2 $ time;
datalines;

1 0 0 20.2 9 0 1 25.9
2 0 0 23.9 10 0 1 34.5
3 0 0 21.9 11 0 1 25.1
4 0 0 42.4 12 0 1 34.2
5 1 0 27.2 13 1 1 35.0
6 1 0 34.0 14 1 1 33.9
7 1 0 27.4 15 1 1 38.3
8 1 0 28.5 16 1 1 39.9
;

The following statements invoke the GLM procedure
for a standard ANOVA.

proc glm data=recover;
class T1 T2;
model time = T1 T2 T1*T2;

run;

The results in Figure 14 indicate that neither treatment
is significant at the 10% level.

The GLM Procedure

Dependent Variable: time

Source DF Type I SS Mean Square

T1 1 81.4506250 81.4506250
T2 1 106.6056250 106.6056250
T1*T2 1 21.8556250 21.8556250

Source F Value Pr > F

T1 2.16 0.1671
T2 2.83 0.1183
T1*T2 0.58 0.4609

Source DF Type III SS Mean Square

T1 1 81.4506250 81.4506250
T2 1 106.6056250 106.6056250
T1*T2 1 21.8556250 21.8556250

Source F Value Pr > F

T1 2.16 0.1671
T2 2.83 0.1183
T1*T2 0.58 0.4609

Figure 14. Model ANOVA

The following statements invoke the ROBUSTREG
procedure with the same model.

proc robustreg data=recover;
class T1 T2;
model time = T1 T2 T1*T2 / diagnostics;
T1_T2: test T1*T2;

run;

The parameter estimates in Figure 15 indicate strong
significance of both treatments.
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The ROBUSTREG Procedure

Parameter Estimates

Standard 95% Confidence Chi-
Parameter DF Estimate Error Limits Square

Intercept 1 36.7655 2.0489 32.7497 40.7814 321.98
T1 0 1 -6.8307 2.8976 -12.5100 -1.1514 5.56
T1 1 0.0000 0.0000 0.0000 0.0000 .
T2 0 1 -7.6755 2.8976 -13.3548 -1.9962 7.02
T2 1 0.0000 0.0000 0.0000 0.0000 .
T1*T2 0 0 1 -0.2619 4.0979 -8.2936 7.7698 0.00
T1*T2 0 1 0.0000 0.0000 0.0000 0.0000 .
T1*T2 1 0 0.0000 0.0000 0.0000 0.0000 .
T1*T2 1 1 0.0000 0.0000 0.0000 0.0000 .
Scale 1 3.5346

Parameter Estimates

Parameter Pr > ChiSq

Intercept <.0001
T1 0 0.0184
T1 1 .
T2 0 0.0081
T2 1 .
T1*T2 0 0 0.9490
T1*T2 0 1 .
T1*T2 1 0 .
T1*T2 1 1 .
Scale

Figure 15. Model Parameter Estimates

The reason for the difference between the traditional
ANOVA and the robust ANOVA is explained by Figure
16, which shows that the fourth observation is an obvi-
ous outlier. Further investigation shows that the origi-
nal value 24.4 for the fourth observation was recorded
incorrectly.

The ROBUSTREG Procedure

Diagnostics

Robust
Obs Residual Outlier

4 5.7722 *

Diagnostics Profile

Name Percentage Cutoff

Outlier 0.0625 3.0000

Figure 16. Diagnostics

Figure 17 displays the robust test results. The inter-
action between the two treatments is not significant.

The ROBUSTREG Procedure

Robust Linear Tests

T1_T2

Test Chi-
Test Statistic Lambda DF Square Pr > ChiSq

Rho-test 0.0041 0.7977 1 0.01 0.9431
Rn2-test 0.0041 _ 1 0.00 0.9490

Figure 17. Test of Significance

Graphical Displays

Two particularly useful plots for revealing outliers and
leverage points are a scatter plot of the robust resid-
uals against the robust distances (RDPLOT) and a
scatter plot of the robust distances against the clas-
sical Mahalanobis distances (DDPLOT). You can cre-
ate these two displays using the data in the ODS table
named DIAGNOSTICS.

Figure 18. RDPLOT

Figure 19. DDPLOT

For the hbk data, the following statements create a
SAS data set named DIAGNOSTICS and produce the
RDPLOT in Figure 18 and the DDPLOT in Figure 19:

ods output Diagnostics=Diagnostics;
ods select Diagnostics;

proc robustreg data=hbk method=lts;
model y = x1 x2 x3 /

11
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diagnostics(all) leverage;
id index;

run;

title "Standard Residual -
Robust Distance Plot";

symbol v=plus h=2.5 pct;
proc gplot data=Diagnostics;

plot RResidual * Robustdis /
hminor = 0
vminor = 0
vaxis = axis1
vref = -3 3
frame;
axis1 label = ( r=0 a=90 );

run;

title "Robust Distance -
Mahalanobis Distance Plot";

symbol v=plus h=2.5 pct;
proc gplot data=Diagnostics;

plot Robustdis * Mahalanobis /
hminor = 0
vminor = 0
vaxis = axis1
vref = 3.0575
frame;
axis1 label = ( r=0 a=90 );

run;

These plots are helpful in identifying outliers, good,
and bad leverage points.

Scalability

The ROBUSTREG procedure implements parallel al-
gorithms for LTS- and S estimation. You can use the
global SAS option CPUCOUNTS to specify the num-
ber of threads to use in the computation:

OPTIONS CPUCOUNTS=1-256|ACTUAL ;

More details about multithreading in SAS Version 9
can be found in Cohen (2002).

The following table contains some empirical results for
LTS estimation we got from using a single processor
and multiple processors (with 8 processors) on a SUN
multi-processor workstation (time in seconds):

RobustReg Timing and Speedup Results
for Narrow Data (10 regressors)

num Time 8 Unthreaded
numObs Vars threads time

50000 10 7.78 5.90
100000 10 10.70 23.54
200000 10 23.49 80.30
300000 10 41.41 171.03
400000 10 63.20 296.30
500000 10 93.00 457.00
750000 10 173.00 1003.00

1000000 10 305.00 1770.00

RobustReg Timing and Speedup Results
for Narrow Data (10 regressors)

Scalable
speedup with

Scalable intercept
numObs speedup adjustment

50000 0.75835 1.26137
100000 2.20000 2.24629
200000 3.41848 3.44375
300000 4.13016 4.01907
400000 4.68829 4.28268
500000 4.91398 4.33051
750000 5.79769 4.94009

1000000 5.80328 4.30432

RobustReg Timing and Speedup Results
for Wide Data (5000 observations)

num num Time 8 Unthreaded Scalable
Vars Obs threads time speedup

50 5000 17.69 24.06 1.36009
100 5000 40.29 76.45 1.89749
200 5000 128.14 319.80 2.49571
250 5000 207.21 520.15 2.51026
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