
Paper 22-28

- 1 -

Next Generation Data _NULL_ Report Writing Using ODS OO Features
Daniel O’Connor, SAS Institute Inc., Cary NC

ABSTRACT
This paper is targeted for advanced data null report-writing
programmers that are eager to take advantage of the new ODS
Object Oriented (OO) features built directly into the data step
environment, which will be experimentally available in Version
9.1. Features will allow you to build tables cell by cell with all of
the ODS features that you have become accustom to such as
proportional fonts, traffic lighting in cells, embedded images, but
will also allow you to create non-tabular output, insert sub-totals,
and manage your layout.

INTRODUCTION
The Output Delivery System (ODS) was introduced in Version 7
as a means for SAS programmers to quickly and easily produces
output in a variety of industry standard forms. Until now the
primary use of the ODS System has been to format procedure
output in a tabular fashion while taking advantage of all the
presentation quality characteristics that are expected in any
reporting technology. SAS provides a variety of report writing
procedures each designed with a particular technique of report
writing in mind. However, not all requirements fit so neatly into
one of these prepackaged techniques. For over 20 years now
data null report writing has been an intricate part of the SAS
report writing solution. It provides the greatest flexibility and
control of all the SAS report writing techniques, so that even the
most rigid reporting requirements can be met with ease. This
paper will briefly review the existing ODS data step integration,
and then will discuss the new OO features in great detail.

OUTPUT DELIVERY SYSTEM
The Output Delivery System is an objected oriented technology
specifically designed to be able to take data and an abstract
description of a report, and render that report in a variety of forms
simultaneously. An Output Object is the fundamental component
of ODS, and its sole responsibility is to package the data, and the
description of how that data should be presented. The data
portion of the output object is commonly referred to as the Data
Object, and can be thought of as a tabular collection of data
(similar to a data set). While the abstract report description is
referred to as the Template Object (or just the Template).
Templates contain tabular formatting information such as the
number of columns, the order in which they are presented,
formatting characteristics (Datetime16.), alignment, column
headings, and may contain stylistic features such as colors, and
fonts. A Template is a pre-packaged description that will only
contain enough information necessary to produce 1 table. So,
when you look at SAS output and see multiple tables being
produced from a procedure each table may in fact have a unique
template definition. There are two important pieces of
information to keep in mind when thinking of a template Object.
First, it is always tabular in nature, and secondly it is pre-
packaged. Neither of these characteristics is flexible, nor allows
the level of control often necessary. Which leads us to the
purpose of this ODS OO data step interface that we will explore in
this paper.

DATA STEP ODS INTERFACE
As part of the initial implementation of ODS in Version 7, a data
step interface was also supported in a limited fashion. Consider
this, If a data set is similar to a Data Object (tabular data) then in
theory it should be relatively straightforward to package the data
step with a pre-defined Template Object (abstract report
definition) to create an Output Object (ODS Table) in any ODS

output destination (HTML, RTF, PDF, etc.). The data step FILE
statement supports an ODS option to enable the creation of an
Output Object, and the data step PUT statement supports an ODS
option to allow the data step to communicate with the Data
Object component of the Output Object. Note that the ODS
option may only be used on the FILE statement when the PRINT
fileref (ie. FILE PRINT ODS = …) is being used.

EXAMPLE 1:

proc template;
define table Sugi28.ex1;
column name ssn bday sex;
 define name;
 width=14;
 header="Customer";
 just=R;
 style={font_weight=Bold};
 end;
 define bday;
 width=14;
 format=MMDDYY8.;
 header="Birth Day";
 cellstyle _val_< "01JAN67"D as
 {foreground=red},
 val < "01JAN70"D as
 {foreground=blue},
 val < "01JAN73"D as
 {foreground=green},
 1 as {foreground=black};
 end;
 define ssn;
 width=14;
 format=ssn.;
 header="SSN";
 just=C;
 justify=on;
 end;
 define sex;
 width=14;
 just = C;
 header="Sex";
 translate _val_ = 0 into "Male",
 val = 1 into "Female";
 justify=on;
 end;
end;

ods rtf file="Sugi_ex1.rtf";

data test;
input name $6. bday mmddyy9. @18 ssn sex;
file print ods =(template="Sugi28.ex1");
put _ods_;
cards;
Dan 11/25/66 340987544 0
Chris 07/28/69 340980983 0
Matt 04/05/72 090985049 0
Patty 11/20/67 093488347 1
;
run;

ods rtf close;

SUGI 28 Applications Development

2

OUTPUT 1:

Customer SSN Birth Day Sex

Dan 340-98-7544 11/25/66 Male

Chris 340-98-0983 07/28/69 Male

Matt 090-98-5049 04/05/72 Male

Patty 093-48-8347 11/20/67 Female

This example accomplished traffic highlighting, the use of
customized stylistic attributes, a numeric translation, justification
of data in a column, and uses proportional fonts all though an
existing data null report writing techniques. It also conveys a
valuable point that an enormous amount of customization can be
accomplished without having the use the ODS OO features that
we are about to introduce. So, when developing a report you
must evaluate which report writing technology is best suited for
the problem at hand. If the desired output is tabular in nature, the
existing data NULL or any of the report writing procs is almost
always the simplest approach. Traditionally data null has been
the only technique that allows multiple input data sources, the
use of multiple observations on a given line, multiple reports to be
generated simultaneously, summarization (subtotal) records need
to be inserted, or when data dependant headers are required.
But, if your goal is to produce a tabular report the existing
interface will continue to be your best choice. Data null report
writing is also used to solve fare more complex reporting
problems where the level of control that is provided by existing
ODS interfaces proves to be inadequate. It is often used when
output simply does not conform to a tabular format, and this will
become your primary justification for using the ODS OO
interface.

ODS INTEGRATION
The ODS Output Object experimental interface is integrated into
all output destinations except for the Listing, Output, and
Document destinations. The Output and Document destinations
are more data oriented than report oriented and therefore do not
conform directly, while the Listing destination already has a
historical data null interface to address the needs of character
cell based reporting. Which realistically leave the HTML, RTF,
and Printer (PDF, PS, PCL) destinations.

OBJECT ORIENTED TECHNIQUE
Object oriented programming revolutionized the software
development industry, and is a sophisticated technique that
allows the developer to perform a specific task with less
programming than a traditional Application Programming
Interface (API) approach. As the name indicated the
fundamental component of an object oriented is the “Object”
itself. The object contains data as well as actions that can
commonly be performed to accomplish a specific task. Our task
today is to create a report one item at a time.

ODS OUTPUT OBJECT CREATION
The DECLARE (Dcl) and NEW statements allow the declaration
and instantiation of ODS Output Object, and the data steps object
dot syntax allow access to the resulting object’s attributes and
methods.

Example 2.1:

declare odsout obj;
obj = _new_ obj();

or

dcl odsout obj();

This tells the data step compiler that a variable obj is of class
type odsout, and all necessary ODS initialization is performed.
When using this technique for data null report writing we are
essentially dynamically binding a data value with specific
formatting information and therefore our previous concepts
concerning Data Object, and pre-define Template Objects have
no bearing on the output that will be generated, and therefore our
use of the following will no longer be necessary.

file print ods =(template="Sugi28.ex1");
put _ods_;

This obj variable will become the means to communicate with
ODS System for your reporting needs, and will remain available
until the completion of the data step or until the explicitly deleted.

PERFORMING ACTIONS (METHOD CALLS)
Methods calls are nothing more than a functional API that is
specific to the object class that has been declared. The general
syntax of a method call is

obj.method(< method arguments >);

Where “method” is the API (action) to be performed, and “method
arguments “ are additional information that the method
understands how to interpret. It is also possible to call the
method in a function-like manner to obtain a numeric return code,
which would indicate the successfulness of the requested action.

Rc=Obj.method(< method arguments >);

Example 2.2:

obj.delete();

The delete method removes memory allocations, and performs
any necessary termination processing required with the declared
object. The obj variable will no longer be available in the context
data step following this method call.

SUGI 28 Applications Development

3

DATA DEPENDANT HEADINGS
Data dependant Title/Footer information has historically been a
difficult for many of the report writing procedures.

Example 2.3:

obj.title(text: "SUGI Power & Light Account
Statement for " || name);

Notice that in addition to a simple piece of text, operators as well
traditional data step formatting characteristics are supported (i.e.
Put(date(), worddate18.)). The title will be produced using the
characteristics defined by the ODS Style that is in effect for the
active output destinations. This seamless integrations of the
data step and ODS will ensure that all of your titles have the
same style characteristics (fonts, colors) throughout any given
report.

TEXT & ODS STYLE CHARACTERISTICS
Data null report writing has often been touted as the solution for
reporting when complete control of the exact placement of
information is required. This could easily be attained by the use
of a monospace font, and fixed character cell based addressing.
With the introduction of proportional fonts, and style attributes in
Version 7 this solution was no longer a viable alternative.

EXAMPLE 2.4:

obj.format_text(text: "Account Number: " ||
 account,
 overrides: "just=Left
 background=colors('headerbg')
 foreground=black
 font_weight=bold");

Notice we are overriding the default style characteristics defined
in the ODS Style of the active output destinations. The
background=colors(‘headerbg”) override looks distinctively
different than the rest of the overrides. This is a ODS Style
element reference which is selecting the ‘headerbg’ item from the
color palette style element called ‘Colors’. This may seem overly
complex in comparison to foreground=black, but is a very
powerful feature. A wide variety of styles can be applied to each
individual output destination, and each has its own set of
presentation quality characteristics. By referencing an element
within the active ODS style your data null report will dynamically
inherit those output characteristics. The expectation of this
example is to make this text appear similar to a SAS title while
being left justified, and always using black foreground color. One
caveat must always be considered when assigning fixed style
characteristics like foreground=black, if the ODS Style itself uses
a very dark background color your black text may be very difficult
to read. Consult ODS documentation for a list of all Style
Attributes & Values.

NON-TABULAR OUTPUT
For tabular output each row of output traditionally corresponds
directly to one row of data. Often one observation is expected to
produce multiple lines of output, or even an entire page of output.
SAS Procedures are simply not architected to allow such
flexibility.

EXAMPLE 2.5:

obj.table_start(name: State,
 Label: "Customer Report for " || State,
 overrides: "just=L
 frame=void
 background=_undef_
 cellspacing=0
 cellpadding=0
 rules=none");
obj.row_start();
obj.format_cell(text: name,
 overrides: "just=Left
 background=_undef_ ");
obj.row_end();
obj.row_start();
obj.format_cell(text: street,
 overrides: "just=Left
 background=_undef_ ");
obj.row_end();
obj.row_start();
obj.format_cell(text: trim(City) || ", " ||
 State || " " || zip,
 overrides: "just=Left
 background=_undef_ ");
obj.row_end();
obj.table_end();

OUTPUT 2.5:

SUGI Power & Light Account Statement for Jay

Account Number: 4983009
Jay
95 Wild Ranch Road
Taos, NM 89875

The table_start method marks the beginning of the table
creation, and must be terminated with a corresponding
table_end. A table is very simply a collection of rows, which are
comprised of a collection of cells. So it will not surprise you to
see that we have modeled the interface to reflect those simple
primitives. Notice that the obj.table_start() method has “name”
and “Label” optional attributes. These are simply the Name/Label
pair that is shown in the results window. A row is only valid as
part of a table, and will be flagged as a run-time error if used
outside that context. In the above example I chose not to
provide any specific style attribute overrides on the rows, but it
would be perfectly acceptable to do so if desired. In addition to
style attributes rows do have some unique characteristics
themselves.

EXAMPLE 2.6:
obj.table_start(name: put(account, 8.),
 overrides: "frame=box
 background=_undef_
 cellpadding=2
 rules=none");

obj.row_start(type: "Header");
obj.format_cell(text: "Account Status”,
 column_span: 2);
obj.row_end();

SUGI 28 Applications Development

4

obj.row_start(type: "Header");
obj.format_cell(text: "Customer");
obj.format_cell(text: "Balance Due");
obj.row_end();

obj.row_start();
obj.format_cell(text: name,
 overrides: "just=Left
 background=_undef_");
curamt = 0.088 * kwhusage;
obj.format_cell(text:
 trim(put(curamt, dollar10.2)),
 row_span: 3,
 override: “vjust=Center”);
obj.row_end();

obj.row_start();
obj.format_cell(text: street,
 overrides: "just=Left
 background=_undef_ ");
obj.row_end();

obj.row_start();
obj.format_cell(text: trim(City) || ", " ||
 State || " " || Zip,
 overrides: "just=Left
 background=_undef_ ");
obj.row_end();
obj.table_end();

Output 2.6:

Account Status
Customer Balance Due

Jay
95 Wild Ranch Road
Taos, NM 89875

$104.60

Heading rows are often used to provide descriptive information
about the data that is being presented, and often are presented
using a different set of visual characteristics. In the event that a
table encounters a page boundary heading rows also are
repeated at the top of every page before continuing to present the
rest of the data. This example also takes account some cell
specific features. Notice that the “Account Status” cell actually
spans the entire table, and the “$104.60” spans 3 rows.

Controlling pagination is yet another feature commonly
addressed with data null report writing. A page request is
interpreted in accordance with the output destinations
expectations. For example, HTML would produce a horizontal
reference line while and output destination such as PDF would
physically begin a new page.

EXAMPLE 2.7:

obj.page();

Reporting needs today encompass both electronic and printed
documents, and each some very unique requirements such as
hyper linking, static images (logo’s), reference lines. Here are a
few additional methods that will allow you to provide even more
customization to your reporting needs.

Obj.line(size: “6in”);

Obj.href(text: “http://www.sas.com/”);

Obj.image(text: “SugiLogo.gif”);

COMPLETE PAGE CONTROL
Having complete control of the content of a page is probably the
most common argument for using data null reporting. Thus far
we have seen examples that empower the report writer to create
some very dynamic reports that to not conform to traditional proc
output, but have yet to introduce the ability to control the exact
placement of the content within the context of a printed page.
ODS Layout is an experimental feature that has been developed
in Version 9.1 to accommodate this type of reporting. Whether it
is combining graphical output and existing procedural output, or
taking advantage of the ODS Layout capabilities built into the
Data NULL you will see that these features are one of the primary
development enhancements for the ODS System. There are two
different layout techniques introduced in version 9.1, Absolute
Layout, and Gridded Layout. Absolute Layout can be used for
reporting needs where pre-printed forms are involved, or precise
placement is a requirement. However, absolute layout is
restricted to a single page of output. Gridded Layout on the other
hand provides a little less control, but is much more
accommodating when you have several items that stretch
multiple columns, rows, or even pages.

ABSOLUTE LAYOUT
Due to the fact that the ODS printer (PS, PCL, PDF) output
destinations are the only destinations that currently have the
concept of a physical page absolute layout is only supported by
these output destinations.

Lets assume that we have a pre-printed form letter that needs to
be filled in with basic customer account information. Historical
data null reporting has been able to accomplish this when using
dot matrix printers (remember those things) and monospace
output, but technology has simply antiquated those techniques.
The defacto standard today is presentation quality reporting, and
the historical data null reporting falls short of adequately
addressing those expectations. The absolute layout area
assumes the height and width of the printable page. Additional
options that affect the printable area of a page are topmargin,
bottommargin, leftmargin, rightmargin, nodate, and nonumber.

obj.layout_absolute();
…
obj.layout_end();

All absolute reporting directives must be encapsulated by the
layout methods. The fundamental component of any layout
technique is defining a region in which some data should be
placed.

obj.region();

SUGI 28 Applications Development

5

REGION OPTIONS:

X

X location relative to the upper-left hand corner of the
Layout area.

Y

Y location relative to the upper-left hand corner of the
Layout area.

Width

 The width of the region.

Height
The height of the region.

All region parameters use the style attribute dimension units of
measure that are used by ODS template language (See ODS
documentation for additional details).

cm centimeters
mm millimeters
in inches
pt printers pt

px pixels(target device pixel
units)

EXAMPLE 3.1:

obj.layout_absolute();
obj.region(y: "1in",
 x: "2in",
 width: "1in");
obj.format_text(text: put(account,8.),
 overrides: "foreground=blue
 font_weight=bold");

obj.region(y: "1in",
 x: "5in",
 width: "2in");
obj.format_text(text:
 trim(put(date(), monname.)) ||
 " 15, 2002",
 overrides: "font_weight=bold");

obj.region(x:"1.25in",
 y: "6in",
 width: "4in",
 height: "2in");
obj.table_start(name: name,
 overrides: "frame=void
 cellspacing=0
 cellpadding=0
 rules=none");
obj.row_start();
obj.format_cell(text: name,
 overrides: "just=Left");
obj.row_end();
obj.row_start();
obj.format_cell(text: street,
 overrides: "just=Left");
obj.row_end();
obj.row_start();
obj.format_cell(text: trim(City) ||
 ", " || State || " " || zip,
 overrides: "just=Left");
obj.row_end();
obj.table_end();

obj.region(x: "5in",
 y: "6in",
 width: "1.5in");
obj.format_text(text:
 put(totalamtdue, dollar10.2),
 overrides: "font_weight=bold");

obj.layout_end();

Absolute layout provides report writers the ultimate control of the
page in a simple yet powerful manner.

GRIDDED LAYOUT
Gridded layout allows you to arrange regions in a series of rows
and columns with different widths and heights. This approach is
similar to the table that was produced earlier that used the
column_span, and row_span attributes. Gridded Layout can be
much more complex than absolute layout and it is strongly
recommended that you layout the entire report on a piece of
paper prior to beginning development. Defining a Gridded Layout
can be accomplished by using the following methods.

Obj.layout_gridded(<gridded layout options >);

…
obj. layout_end();

GRIDDED LAYOUT OPTIONS:

Width

The width of the overall layout (dimension units).

Height

The height of the over all layout (dimension units).

Columns

Specifies the number of columns to use in the gridded
layout(Default 1 column).

Rows

Specifies the number of rows in the gridded layout. The
option should seldom be used. The number of rows is
automatically calculated for you based on the number
of regions that are created prior to the layout_end()
method.

Column_widths

Specify the width of each column (dimension units).
The default is to simply divide the horizontal space
evenly across all of the number of columns. You must
specify the columns= option, and specify this option
once for each column defined.

Row_hieghts

Specify the width of each row (dimension units). You
must specify the rows= option, and specify this option
once for each rows defined.

Column_gutter

Specify the width of the space between columns.

Row_gutter

Specify the space between rows.

SUGI 28 Applications Development

6

Similar to Absolute layout, the fundamental component the
Gridded layout is the region in which an item should be placed.

GRIDDED REGION OPTIONS:

X, Y

Invalid for Gridded Layout.

Width

Normally used for absolute layout.

Height

Normally used for absolute layout.

Column

The Gridded column. Only required when skipping
columns.

Row

The Gridded row. Only required when skipping rows.

Column_span

The number of gridded layout columns that the region
should occupy. The default is 1 column.

Row_span

The number of gridded layout rows the region should
occupy. The default is 1 row.

Column_gutter

Overrides the column_gutter.

Row_gutter

Overrides the row_gutter.

Lets take a close look at a simple Gridded Layout. We are going
to reproduce something similar to Example 2.7.

EXAMPLE 3.2:

obj.layout_gridded(columns: 2);

/* Row 1 */
obj.region(column_span: 2);
obj.format_text(text: "Account Status",
 overrides: "just=Center
 foreground =colors('headerfg')
 background =colors('headerbf')
 font_weight=bold");

/* Row 2 */
obj.region();
obj.format_text(text: "Customer",
 overrides: "just=Left");
obj.region();
obj.format_text(text: "Balance Due",
 overrides: "just=Left");

curamt = 0.088 * kwhusage;

/* Row e */
obj.region();
obj.layout_gridded(columns: 1,
 column_gutter: "0.1in",
 row_gutter: "0.1in");

obj.region();
obj.format_text(text: name,
 overrides: "just=Left
 foreground=red");
obj.region();
obj.format_text(text: street,
 overrides: "just=Left");
obj.region();
obj.format_text(text: trim(City) ||
 ", " || State || " " || Zip,
 overrides: "just=Left");
obj.layout_end();

obj.region();
obj.format_text(text:
 trim(put(curamt, dollar10.2)),
 overrides: "just=Left");

obj.layout_end();

OUTPUT 3.2:

This example establishes a gridded layout that contains 2 gridded
columns that we will place regions into. Notice that the first
region (“Account Status”) spans the entire gridded layout (row 1).
The next two separate regions (“Customer”, “Balance Due”)
comprise the information that makes up row 2. Row 3 is very
unique in the sense that it contains a nested gridded layout that
controls the presentation of the customer name and address
within the context of the first column. When you take a look at
the output that was produce your first expectation would be that
the layout would probably contain 5 rows when in fact it only
contains 3 rows due to the nesting of the gridded layout. You
can begin to see why gridded layout can be far more complex
and powerful than absolute layout.

MORE ELABORATE GRIDDED SCENARIO
The final example that I will leave you with uses a variety of
topics covered in this paper, and is intended to inspire you to take
advantage of this new technology to solve all of your elaborate
reporting needs. The source code will be available at
http://www.sas.com/rnd/base/index-early-access.html
The goal of this example is to produce an invoicing report for
each customer of the “SUGI Power & Light” company. By
utilizing the data step by statement I can produce one report per
customer using a complex gridded layout technique.

SUGI 28 Applications Development

7

Complex Gridded output:

CONCLUSION
SAS provides a variety of report writing solutions that is intended
to address everything from the most basic reporting needs to the
most esoteric requests. The ODS Output Object and Layout
features that’s being integrated into the data step is intended to
round out our SAS/Base report writing technology product
offering. This technology will empower the SAS programmer with
the tools to conquer any request with the greatest of ease.

REFERENCES
Reporting from the Field: SAS Software Experts Present Real-
World Report-Writing Applications, Cary, NC, USA. SAS Institute
Inc.

SAS Guide to report Writing Examples: Examples, Version 6,
First Edition, Cary, NC, USA. SAS Institute Inc.

ODS: The Data Step Knows, by William F. Heffner, SAS Institute
Inc.

ACKNOWLEDGMENTS
The author greatly appreciates input on
content from Janice Bloom, Chevell Parker,
as well as the rest of the Technical Support
staff that made contributions. An immense
amount of gratitude also goes to Brian
Schellenberger for much of the
development associated with the layout
technology, and as well as the rest of my
colleagues on the ODS Development
Team.

Contact Information
Your comments and questions are valued and encouraged.

Contact the author at:

Daniel O’Connor
SAS Institute Inc.
SAS Campus Drive
Cary, NC 27513
Phone: (919) 677-8000
Fax: (919) 677-4444
Email: Dan.Oconnor@sas.com

SAS and all other SAS Institute Inc. product or service
names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® Indicates
USA registration.

Other brand and product names are trademarks of their
respective companies.

SUGI 28 Applications Development

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

