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ABSTRACT  
This paper is targeted for advanced data null report-writing 
programmers that are eager to take advantage of the new ODS 
Object Oriented (OO) features built directly into the data step 
environment, which will be experimentally available in Version 
9.1.    Features will allow you to build tables cell by cell with all of 
the ODS features that you have become accustom to such as 
proportional fonts, traffic lighting in cells, embedded images, but 
will also allow you to create non-tabular output, insert sub-totals, 
and manage your layout.  

INTRODUCTION 
The Output Delivery System (ODS) was introduced in Version 7 
as a means for SAS programmers to quickly and easily produces 
output in a variety of industry standard forms.  Until now the 
primary use of the ODS System has been to format procedure 
output in a tabular fashion while taking advantage of all the 
presentation quality characteristics that are expected in any 
reporting technology.   SAS provides a variety of report writing 
procedures each designed with a particular technique of report 
writing in mind.  However, not all requirements fit so neatly into 
one of these prepackaged techniques.  For over 20 years now 
data null report writing has been an intricate part of the SAS 
report writing solution.  It provides the greatest flexibility and 
control of all the SAS report writing techniques, so that even the 
most rigid reporting requirements can be met with ease.  This 
paper will briefly review the existing ODS data step integration, 
and then will discuss the new OO features in great detail.   

OUTPUT DELIVERY SYSTEM  
The Output Delivery System is an objected oriented technology 
specifically designed to be able to take data and an abstract 
description of a report, and render that report in a variety of forms 
simultaneously.  An Output Object is the fundamental component 
of ODS, and its sole responsibility is to package the data, and the 
description of how that data should be presented.   The data 
portion of the output object is commonly referred to as the Data 
Object, and can be thought of as a tabular collection of data 
(similar to a data set).   While the abstract report description is 
referred to as the Template Object (or just the Template).  
Templates contain tabular formatting information such as the 
number of columns, the order in which they are presented, 
formatting characteristics (Datetime16.), alignment, column 
headings, and may contain stylistic features such as colors, and 
fonts.  A Template is a pre-packaged description that will only 
contain enough information necessary to produce 1 table.  So, 
when you look at SAS output and see multiple tables being 
produced from a procedure each table may in fact have a unique 
template definition.  There are two important pieces of 
information to keep in mind when thinking of a template Object.  
First, it is always tabular in nature, and secondly it is pre-
packaged.   Neither of these characteristics is flexible, nor allows 
the level of control often necessary.  Which leads us to the 
purpose of this ODS OO data step interface that we will explore in 
this paper.  

DATA STEP ODS INTERFACE 
As part of the initial implementation of ODS in Version 7, a data 
step interface was also supported in a limited fashion.   Consider 
this, If a data set is similar to a Data Object (tabular data) then in 
theory it should be relatively straightforward to package the data 
step with a pre-defined Template Object (abstract report 
definition) to create an Output Object (ODS Table) in any ODS 

output destination (HTML, RTF, PDF, etc.).  The data step FILE 
statement supports an ODS option to enable the creation of an 
Output Object, and the data step PUT statement supports an ODS 
option to allow the data step to communicate with the Data 
Object component of the Output Object.  Note that the ODS 
option may only be used on the FILE statement when the PRINT 
fileref (ie.  FILE PRINT ODS = …) is being used. 

EXAMPLE 1: 
 
proc template;  
define table Sugi28.ex1; 
column name ssn bday sex; 
  define name; 
     width=14; 
     header="Customer"; 
     just=R; 
     style={font_weight=Bold}; 
  end; 
  define bday; 
     width=14; 
     format=MMDDYY8.; 
     header="Birth Day"; 
     cellstyle _val_< "01JAN67"D as 
                        {foreground=red},   
               _val_ < "01JAN70"D as 
                        {foreground=blue},  
               _val_ < "01JAN73"D as 
                        {foreground=green}, 
               1 as     {foreground=black}; 
   end; 
  define ssn; 
     width=14; 
     format=ssn.; 
     header="SSN"; 
     just=C; 
     justify=on; 
  end; 
  define sex; 
     width=14; 
      just = C; 
     header="Sex"; 
     translate _val_ = 0 into "Male",  
               _val_ = 1 into "Female"; 
               justify=on; 
  end; 
end; 
  
ods rtf file="Sugi_ex1.rtf"; 
 
data test; 
input name $6. bday mmddyy9. @18 ssn sex; 
file print ods =(template="Sugi28.ex1"); 
put _ods_; 
cards; 
Dan    11/25/66  340987544 0 
Chris  07/28/69  340980983 0 
Matt   04/05/72  090985049 0 
Patty  11/20/67  093488347 1 
; 
run; 
 
ods rtf close; 
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OUTPUT 1: 
 

Customer SSN Birth Day Sex 

Dan 340-98-7544 11/25/66 Male 

Chris 340-98-0983 07/28/69 Male 

Matt 090-98-5049 04/05/72 Male 

Patty 093-48-8347 11/20/67 Female 

 
This example accomplished traffic highlighting, the use of 
customized stylistic attributes, a numeric translation, justification 
of data in a column, and uses proportional fonts all though an 
existing data null report writing techniques.  It also conveys a 
valuable point that an enormous amount of customization can be 
accomplished without having the use the ODS OO features that 
we are about to introduce.   So, when developing a report you 
must evaluate which report writing technology is best suited for 
the problem at hand.  If the desired output is tabular in nature, the 
existing data NULL or any of the report writing procs is almost 
always the simplest approach.  Traditionally data null has been 
the only technique that allows multiple input data sources, the 
use of multiple observations on a given line, multiple reports to be 
generated simultaneously, summarization (subtotal) records need 
to be inserted, or when data dependant headers are required. 
But, if your goal is to produce a tabular report the existing 
interface will continue to be your best choice.  Data null report 
writing is also used to solve fare more complex reporting 
problems where the level of control that is provided by existing 
ODS interfaces proves to be inadequate.  It is often used when 
output simply does not conform to a tabular format, and this will 
become your primary justification for using the ODS OO 
interface.   

ODS INTEGRATION 
The ODS Output Object experimental interface is integrated into 
all output destinations except for the Listing, Output, and 
Document destinations.  The Output and Document destinations 
are more data oriented than report oriented and therefore do not 
conform directly, while the Listing destination already has a 
historical data null interface to address the needs of character 
cell based reporting.   Which realistically leave the HTML, RTF, 
and Printer (PDF, PS, PCL) destinations.  

OBJECT ORIENTED TECHNIQUE 
Object oriented programming revolutionized the software 
development industry, and is a sophisticated technique that 
allows the developer to perform a specific task with less 
programming than a traditional Application Programming 
Interface (API) approach.  As the name indicated the 
fundamental component of an object oriented is the “Object” 
itself.   The object contains data as well as actions that can 
commonly be performed to accomplish a specific task. Our task 
today is to create a report one item at a time. 

ODS OUTPUT OBJECT CREATION 
The DECLARE (Dcl) and NEW statements allow the declaration 
and instantiation of ODS Output Object, and the data steps object 
dot syntax allow access to the resulting object’s attributes and 
methods.   

 
 
 
 
 

Example 2.1: 
 
declare odsout obj; 
obj = _new_ obj(); 
 
or 
 
dcl odsout obj(); 

     
This tells the data step compiler that a variable obj is of class 
type odsout, and all necessary ODS initialization is performed.   
When using this technique for data null report writing we are 
essentially dynamically binding a data value with specific 
formatting information and therefore our previous concepts 
concerning Data Object, and pre-define Template Objects have 
no bearing on the output that will be generated, and therefore our 
use of the following will no longer be necessary.    
 
file print ods =(template="Sugi28.ex1"); 
put _ods_;  

 
This obj variable will become the means to communicate with 
ODS System for your reporting needs, and will remain available 
until the completion of the data step or until the explicitly deleted.    

 

PERFORMING ACTIONS (METHOD CALLS) 
Methods calls are nothing more than a functional API that is 
specific to the object class that has been declared.   The general 
syntax of a method call is  

 
obj.method( < method arguments > ); 

 
Where “method” is the API (action) to be performed, and “method 
arguments “ are additional information that the method 
understands how to interpret.  It is also possible to call the 
method in a function-like manner to obtain a numeric return code, 
which would indicate the successfulness of the requested action.  

 
Rc=Obj.method( < method arguments > ); 

 
 
Example 2.2: 
 
obj.delete(); 

 
The delete method removes memory allocations, and performs 
any necessary termination processing required with the declared 
object.  The obj variable will no longer be available in the context 
data step following this method call.  
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DATA DEPENDANT HEADINGS 
Data dependant Title/Footer information has historically been a 
difficult for many of the report writing procedures.   
 
Example 2.3: 
 
obj.title(text: "SUGI Power & Light Account 
Statement for " ||  name); 

 
Notice that in addition to a simple piece of text, operators as well 
traditional data step formatting characteristics are supported (i.e. 
Put(date(), worddate18.) ).  The title will be produced using the 
characteristics defined by the ODS Style that is in effect for the 
active output destinations.   This seamless integrations of the 
data step and ODS will ensure that all of your titles have the 
same style characteristics (fonts, colors) throughout any given 
report.  

 

TEXT & ODS STYLE CHARACTERISTICS 
Data null report writing has often been touted as the solution for 
reporting when complete control of the exact placement of 
information is required.   This could easily be attained by the use 
of a monospace font, and fixed character cell based addressing.  
With the introduction of proportional fonts, and style attributes in 
Version 7 this solution was no longer a viable alternative.    

 

EXAMPLE 2.4: 
 
obj.format_text(text: "Account Number: " ||  
    account,  
 overrides: "just=Left 
             background=colors('headerbg') 
             foreground=black 
             font_weight=bold" ); 

 
Notice we are overriding the default style characteristics defined 
in the ODS Style of the active output destinations. The 
background=colors(‘headerbg”) override looks distinctively 
different than the rest of the overrides.  This is a ODS Style 
element reference which is selecting the ‘headerbg’ item from the 
color palette style element called ‘Colors’.   This may seem overly 
complex in comparison to foreground=black, but is a very 
powerful feature.  A wide variety of styles can be applied to each 
individual output destination, and each has its own set of 
presentation quality characteristics.  By referencing an element 
within the active ODS style your data null report will dynamically 
inherit those output characteristics.  The expectation of this 
example is to make this text appear similar to a SAS title while 
being left justified, and always using black foreground color.  One 
caveat must always be considered when assigning fixed style 
characteristics like foreground=black, if the ODS Style itself uses 
a very dark background color your black text may be very difficult 
to read.  Consult ODS documentation for a list of all Style 
Attributes & Values.   

NON-TABULAR OUTPUT 
For tabular output each row of output traditionally corresponds 
directly to one row of data.  Often one observation is expected to 
produce multiple lines of output, or even an entire page of output.  
SAS Procedures are simply not architected to allow such 
flexibility.    
 

 

EXAMPLE 2.5: 
 
obj.table_start(name: State,  
 Label: "Customer Report for " || State, 
 overrides: "just=L 
             frame=void 
             background=_undef_ 
             cellspacing=0 
             cellpadding=0 
             rules=none" ); 
obj.row_start(); 
obj.format_cell(text: name,  
 overrides: "just=Left 
             background=_undef_ " ); 
obj.row_end(); 
obj.row_start(); 
obj.format_cell(text: street,  
 overrides: "just=Left 
             background=_undef_ "  ); 
obj.row_end(); 
obj.row_start(); 
obj.format_cell(text: trim(City) || ", " ||  
    State || " " || zip,  
    overrides: "just=Left 
                background=_undef_ "  ); 
obj.row_end(); 
obj.table_end();   

 
OUTPUT 2.5:  
 

SUGI Power & Light Account Statement for Jay
 
Account Number:      4983009
Jay 
95 Wild Ranch Road
Taos, NM         89875
 
The table_start  method marks the beginning of the table 
creation, and must be terminated with a corresponding 
table_end.  A table is very simply a collection of rows, which are 
comprised of a collection of cells.  So it will not surprise you to 
see that we have modeled the interface to reflect those simple 
primitives.  Notice that the obj.table_start() method has “name” 
and “Label” optional attributes. These are simply the Name/Label 
pair that is shown in the results window. A row is only valid as 
part of a table, and will be flagged as a run-time error if used 
outside that context.   In the above example I chose not to 
provide any specific style attribute overrides on the rows, but it 
would be perfectly acceptable to do so if desired.  In addition to 
style attributes rows do have some unique characteristics 
themselves. 

 

EXAMPLE 2.6:  
obj.table_start(name: put(account, 8.),  
        overrides: "frame=box  
                    background=_undef_ 
                    cellpadding=2 
                    rules=none" ); 
 
obj.row_start(type: "Header"); 
obj.format_cell(text: "Account Status”,  
             column_span: 2 ); 
obj.row_end(); 
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obj.row_start(type: "Header"); 
obj.format_cell(text: "Customer" ); 
obj.format_cell(text: "Balance Due" ); 
obj.row_end(); 
 
obj.row_start(); 
obj.format_cell(text: name,  
             overrides: "just=Left 
             background=_undef_"); 
curamt  = 0.088 * kwhusage; 
obj.format_cell(text:  
                trim(put(curamt, dollar10.2)), 
             row_span: 3, 
             override: “vjust=Center”); 
obj.row_end(); 
 
obj.row_start(); 
obj.format_cell(text: street,  
             overrides: "just=Left 
             background=_undef_ "); 
obj.row_end(); 
 
obj.row_start(); 
obj.format_cell(text: trim(City) || ", " || 
                State || " " || Zip,  
             overrides: "just=Left 
             background=_undef_ "); 
obj.row_end(); 
obj.table_end();  

 

Output 2.6:  
 

Account Status 
Customer Balance Due 

Jay 
95 Wild Ranch Road 
Taos, NM         89875 

$104.60 

 
Heading rows are often used to provide descriptive information 
about the data that is being presented, and often are presented 
using a different set of visual characteristics.  In the event that a 
table encounters a page boundary heading rows also are 
repeated at the top of every page before continuing to present the 
rest of the data.  This example also takes account some cell 
specific features. Notice that the “Account Status” cell actually 
spans the entire table, and the “$104.60” spans 3 rows.   
 
Controlling pagination is yet another feature commonly 
addressed with data null report writing.  A page request is 
interpreted in accordance with the output destinations 
expectations.  For example, HTML would produce a horizontal 
reference line while and output destination such as PDF would 
physically begin a new page.  
 

EXAMPLE 2.7: 
 
obj.page(); 
 
 
 
 
 
 

 
Reporting needs today encompass both electronic and printed 
documents, and each some very unique requirements such as 
hyper linking, static images (logo’s), reference lines. Here are a 
few additional methods that will allow you to provide even more 
customization to your reporting needs.  
 
Obj.line(size: “6in”); 
 
Obj.href(text: “http://www.sas.com/”); 
 
Obj.image(text: “SugiLogo.gif”); 
 

COMPLETE PAGE CONTROL 
Having complete control of the content of a page is probably the 
most common argument for using data null reporting.  Thus far 
we have seen examples that empower the report writer to create 
some very dynamic reports that to not conform to traditional proc 
output, but have yet to introduce the ability to control the exact 
placement of the content within the context of a printed page.   
ODS Layout is an experimental feature that has been developed 
in Version 9.1 to accommodate this type of reporting.  Whether it 
is combining graphical output and existing procedural output, or 
taking advantage of the ODS Layout capabilities built into the 
Data NULL you will see that these features are one of the primary 
development enhancements for the ODS System.  There are two 
different layout techniques introduced in version 9.1, Absolute 
Layout, and Gridded Layout.  Absolute Layout can be used for 
reporting needs where pre-printed forms are involved, or precise 
placement is a requirement.  However, absolute layout is 
restricted to a single page of output.  Gridded Layout on the other 
hand provides a little less control, but is much more 
accommodating when you have several items that stretch 
multiple columns, rows, or even pages. 

ABSOLUTE LAYOUT   
Due to the fact that the ODS printer (PS, PCL, PDF) output 
destinations are the only destinations that currently have the 
concept of a physical page absolute layout is only supported by 
these output destinations.  
 
Lets assume that we have a pre-printed form letter that needs to 
be filled in with basic customer account information.  Historical 
data null reporting has been able to accomplish this when using 
dot matrix printers (remember those things) and monospace 
output, but technology has simply antiquated those techniques.  
The defacto standard today is presentation quality reporting, and 
the historical data null reporting falls short of adequately 
addressing those expectations.   The absolute layout area 
assumes the height and width of the printable page.  Additional 
options that affect the printable area of a page are topmargin, 
bottommargin, leftmargin, rightmargin, nodate, and nonumber.    
 
obj.layout_absolute(); 
… 
obj.layout_end(); 
 
All absolute reporting directives must be encapsulated by the 
layout methods.   The fundamental component of any layout 
technique is defining a region in which some data should be 
placed.  

 
obj.region();  
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REGION OPTIONS: 
 
X  

X location relative to the upper-left hand corner of the 
Layout area.  

 
Y 

Y location relative to the upper-left hand corner of the 
Layout area.  

 
Width  

 The width of the region.  
 

Height 
The height of the region.  
 

All region parameters use the style attribute dimension units of 
measure that are used by ODS template language (See ODS 
documentation for additional details).  
 

cm  centimeters 
mm millimeters 
in inches 
pt  printers pt 

px  pixels(target device pixel 
units) 

EXAMPLE 3.1: 
 
obj.layout_absolute(); 
obj.region(y: "1in",  
           x: "2in", 
           width: "1in"); 
obj.format_text(text: put(account,8.), 
    overrides: "foreground=blue 
                font_weight=bold"); 
 
obj.region(y: "1in", 
           x: "5in", 
           width: "2in"); 
obj.format_text(text:  
        trim(put(date(), monname.)) || 
        " 15, 2002", 
        overrides: "font_weight=bold"); 
 
obj.region(x:"1.25in", 
           y: "6in", 
           width: "4in", 
           height: "2in"); 
obj.table_start(name: name,  
    overrides: "frame=void 
                     cellspacing=0 
                     cellpadding=0 
                     rules=none" ); 
obj.row_start(); 
obj.format_cell(text: name,  
             overrides: "just=Left" ); 
obj.row_end(); 
obj.row_start(); 
obj.format_cell(text: street,  
               overrides: "just=Left"); 
obj.row_end(); 
obj.row_start(); 
obj.format_cell(text: trim(City) ||  
        ", " || State || " " || zip, 
        overrides: "just=Left"  ); 
obj.row_end(); 
obj.table_end();   
 

obj.region(x: "5in", 
           y: "6in", 
           width: "1.5in"); 
obj.format_text(text:  
   put(totalamtdue, dollar10.2),  
   overrides: "font_weight=bold" ); 
 
obj.layout_end(); 

 
Absolute layout provides report writers the ultimate control of the 
page in a simple yet powerful manner.   

GRIDDED LAYOUT 
Gridded layout allows you to arrange regions in a series of rows 
and columns with different widths and heights. This approach is 
similar to the table that was produced earlier that used the 
column_span, and row_span attributes. Gridded Layout can be 
much more complex than absolute layout and it is strongly 
recommended that you layout the entire report on a piece of 
paper prior to beginning development.  Defining a Gridded Layout 
can be accomplished by using the following methods.  

 
Obj.layout_gridded(<gridded layout options > ); 
 
… 
obj. layout_end(); 

GRIDDED LAYOUT OPTIONS:  
 
Width  

The width of the overall layout (dimension units).  
 
Height 

The height of the over all layout (dimension units).  
 
Columns 

Specifies the number of columns to use in the gridded 
layout(Default 1 column). 

 
Rows  

Specifies the number of rows in the gridded layout. The 
option should seldom be used. The number of rows is 
automatically calculated for you based on the number 
of regions that are created prior to the layout_end() 
method.  

 
Column_widths  

Specify the width of each column (dimension units). 
The default is to simply divide the horizontal space 
evenly across all of the number of columns.  You must 
specify the columns= option, and specify this option 
once for each column defined.  

 
Row_hieghts 

Specify the width of each row (dimension units).  You 
must specify the rows= option, and specify this option 
once for each rows defined. 

 
Column_gutter 

Specify the width of the space between columns.  
 
Row_gutter 

Specify the space between rows.  
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Similar to Absolute layout, the fundamental component the 
Gridded layout is the region in which an item should be placed. 

GRIDDED REGION OPTIONS: 
 
X, Y   

Invalid for Gridded Layout.  
 
Width 

Normally used for absolute layout.  
 
Height 

Normally used for absolute layout.    
 
Column 

The Gridded column.  Only required when skipping 
columns.  

 
Row  

The Gridded row. Only required when skipping rows.  
 
Column_span 

The number of gridded layout columns that the region 
should occupy. The default is 1 column. 

 
Row_span 

The number of gridded layout rows the region should 
occupy. The default is 1 row.  

 
Column_gutter  

Overrides the column_gutter. 
 
Row_gutter 

Overrides the row_gutter.  
 
 
Lets take a close look at a simple Gridded Layout.  We are going 
to reproduce something similar to Example 2.7.    

EXAMPLE 3.2:  
 
obj.layout_gridded(columns: 2); 
 
/* Row 1 */ 
obj.region(column_span: 2); 
obj.format_text(text: "Account Status",   
        overrides: "just=Center  
        foreground =colors('headerfg') 
        background =colors('headerbf') 
        font_weight=bold" ); 
 
/* Row 2 */ 
obj.region(); 
obj.format_text(text: "Customer", 
        overrides: "just=Left"); 
obj.region(); 
obj.format_text(text: "Balance Due", 
        overrides: "just=Left"); 
 
curamt  = 0.088 * kwhusage; 
 
/* Row e */ 
obj.region(); 
obj.layout_gridded(columns: 1,  
        column_gutter: "0.1in",   
        row_gutter: "0.1in"); 

obj.region(); 
obj.format_text(text: name,  
        overrides: "just=Left 
        foreground=red"); 
obj.region(); 
obj.format_text(text: street,  
        overrides: "just=Left"); 
obj.region(); 
obj.format_text(text: trim(City) ||  
        ", " || State || " " || Zip,  
        overrides: "just=Left"); 
obj.layout_end(); 
 
obj.region(); 
obj.format_text(text:  
         trim(put(curamt, dollar10.2)),  
         overrides: "just=Left"); 
 
obj.layout_end(); 
 

OUTPUT 3.2: 
 

 
This example establishes a gridded layout that contains 2 gridded 
columns that we will place regions into.  Notice that the first 
region (“Account Status”) spans the entire gridded layout  (row 1).   
The next two separate regions (“Customer”, “Balance Due”) 
comprise the information that makes up row 2.   Row 3 is very 
unique in the sense that it contains a nested gridded layout that 
controls the presentation of the customer name and address 
within the context of the first column.   When you take a look at 
the output that was produce your first expectation would be that 
the layout would probably contain 5 rows when in fact it only 
contains 3 rows due to the nesting of the gridded layout.   You 
can begin to see why gridded layout can be far more complex 
and powerful than absolute layout.   

MORE ELABORATE GRIDDED SCENARIO 
The final example that I will leave you with uses a variety of 
topics covered in this paper, and is intended to inspire you to take 
advantage of this new technology to solve all of your elaborate 
reporting needs.  The source code will be available at  
http://www.sas.com/rnd/base/index-early-access.html    
The goal of this example is to produce an invoicing report for 
each customer of the “SUGI Power & Light” company.   By 
utilizing the data step by statement I can produce one report per 
customer using a complex gridded layout technique.  
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Complex Gridded output:  
 

 

CONCLUSION  
SAS provides a variety of report writing solutions that is intended 
to address everything from the most basic reporting needs to the 
most esoteric requests.   The ODS Output Object and Layout 
features that’s being integrated into the data step is intended to 
round out our SAS/Base report writing technology product 
offering.  This technology will empower the SAS programmer with 
the tools to conquer any request with the greatest of ease.  
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