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Nine Steps to Get Started using SAS® Macros 
Jane Stroupe, SAS Institute, Chicago, IL 

 
 

ABSTRACT  
Have you ever heard your coworkers rave about macros? If so, 
you've probably wondered what all the fuss was about. This 
introductory tutorial unravels the mystery of why and how you use 
the SAS macro facility. In the nine easy steps outlined in this 
paper, you follow the process of testing your code, substituting 
macro variables into the code, and turning your SAS program into 
a macro definition with conditional processing. 

INTRODUCTION 
The macro facility is comprised of two components: 
• macro variables 
• macro definitions. 
 
Simply put, the purpose of both of these is text substitution. 
Utilizing the macro facility can make your code 
• easy to maintain 
• flexible 
• dynamic. 
 
You can write a macro definition to execute code conditionally in 
nine steps. 
 
The macro definition developed in this tutorial prints hotel 
information from a SAS data set named EXPENSES that is 
updated with resorts' costs and amenities as they change. You 
need to run the program often in order to monitor any changes. In 
this example, if you submit the program in June, July, or August, 
you want to print a list of the cheapest hotels (those with room 
rates less than the average room rate for the entire data set.) 
Otherwise, you want to print a list of all the hotels in the data. 

STEP 1:  
WRITE YOUR PROGRAM AND MAKE SURE IT WORKS. 
One of the macro tricks is to make sure that your code executes 
correctly and efficiently before you begin the process of 
'macroizing' the program. It is much easier to debug your code 
when it is not in a macro or does not reference macro variables. 
So hard code your program and check it out first. 
 

proc means data=expenses mean; 
   var RoomRate; 
run;  

 
Analysis Variable : RoomRate 

 
Mean 

                     ------------ 
                      221.1090000 
                     ------------ 

 
After looking at the output report to determine the average value, 
submit the PRINT procedure step with a WHERE statement. 
 

proc print data=expenses; 
   title 'Lowest Priced Hotels in the  
          EXPENSES Data Set'; 
   footnote 'On June 1, 2003'; 
   var ResortName RoomRate Food; 
   where RoomRate<=221.109; 
run;  

 

When you run the program on June 1, the following report is 
generated. 
 

 
Lowest Priced Hotels in the EXPENSES Data Set 

 
   Obs    ResortName                      RoomRate   Food 
 
   1  Joe's Pretty Good Resort & Bait Shop  165.89  45.5 
   2  Larry, Curly, and Motel               178.9     64 
   3  Sand And Shores                       215.32    76 
   4  Array of Sun Hotel                    210.78    54 
   5  Report Resort                         189.87    49 
   7  Dew Drop Inn                          197.12    45 
   10 Come On Inn                           187.98    36 
 
. 
. 
. 
 
 

On June 1, 2003 

 

REASONS TO USE THE MACRO FACILITY 
1. The macro facility can automatically change this program 

every time you access the data set or the EXPENSES file 
updates. 

 
STEP 2: 
USE MACRO VARIABLES TO FACILITATE TEXT 
SUBSTITUTION. 
One technique for making a change to the program is to replace 
text by utilizing the REPLACE feature of your operating 
environment; however, there are downsides of that technique. For 
example, you might accidentally change a word that you do not 
want changed, or you might have to avoid that problem by using 
FIND  REPLACE repetitively. Furthermore, you must repeat the 
process every time you want to change the program.  
 
Instead of replacing values manually, let SAS macro variables do 
it for you. Macro variables provide text substitution that you 
typically use for individual words or phrases, rather than for 
blocks of code. There are  
• automatic macro variables such as the date on which you 

invoked SAS  
• user-defined macro variables created with the %LET statement 
• user-defined macro variables created with the CALL SYMPUT 

routine in a DATA step or with the SQL procedure.  
 
Regardless of how you create the macro variables, to reference 
them in your program, preface the name of the macro variable 
with an &. 
 

options symbolgen; ① 
 

%let dsn=expenses; ② 
%let varlist=ResortName RoomRate Food; 
 
proc means data=&dsn mean; 
   var RoomRate; 
run;  
 
/* You still have to look at the report */ 
/* to determine the average amount.     */ 
 
%let average=221.109; 
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proc print data=&dsn; 

   title "Lowest Priced Hotels in the &dsn ③ 
          Data Set"; 

   footnote "On &sysdate9"; ④ 
   var &varlist; 
   where RoomRate<=&average; 
run; 

 
① The global system option SYMBOLGEN prints in your log 

how the macro variable is resolved. Without it, your macro 
substitution is difficult to debug. When your macro variables 
substitute perfectly, you can turn the option off by submitting  
 options nosymbolgen; 

② To create a macro variable with a %LET statement, use 
%LET MacroVariableName=MacroVariableValue; 
The name of a macro variable can be up to 32 characters in 
length; the value can be up to 64K in length. Typically, the 
macro variable value is not enclosed in quotation marks since 
the macro facility assumes that the macro variable value is 
text. If you do put quotation marks around the word expenses 
or the value 221.109, the quotation marks are stored as part 
of the value. When you create macro variables with %LET, 
the values of the macro variables are stored in an area of 
memory that is called the global symbol table. When your 
SAS session is over, the global symbol table is deleted. 

③ To reference a macro variable use an & immediately before 
the name of the macro variable. SAS then substitutes the 
value of the macro variable into the code before it is 
compiled. When using a macro variable in a TITLE statement 
(or in fact, any time you would normally use single quotation 
marks), you must put the quoted text in double quotation 
marks. The macro facility cannot do text substitution when 
there are single quotation marks. 

④ The automatic macro variable SYSDATE9 is the date on 
which you invoked SAS. &SYSDATE9 prints the date as 
01JUN2003. There is another automatic macro variable, 
&SYSDATE, that prints the date as 01JUN03. 

 

REASONS TO USE THE MACRO FACILITY 
2.  Macro variables make your code easy to maintain. 

STEP 3: 
USE A MACRO FUNCTION TO CAPITALIZE THE NAME OF 
THE DATA SET. 
The case of the macro variable value is the same as the case in 
which it was typed in the %LET statement. If you want to ensure 
that the word "EXPENSES" is in upper case in the title, you can 
use the %UPCASE function. The %UPCASE function is one of 
many functions that can have macro variables as arguments. 
Other functions such as %SCAN and %SUBSTR can be used for 
more complicated applications. 

 
options symbolgen; 
 
%let dsn=expenses; 
%let varlist=ResortName RoomRate Food; 
 
proc means data=&dsn mean; 
   var RoomRate; 
run; 
 
%let average=221.109;  
 
proc print data=&dsn; 
   title "Lowest Priced Hotels in the 

          %upcase(&dsn) Data Set";  ① 
   footnote "On &sysdate9"; 

   var &varlist; 
   where RoomRate<=&average; 
run; 
 

① The macro variable functions like %UPCASE can be used in 
statements in which, by default, DATA step functions cannot 
be used. DATA step functions are applied to values in a 
buffer called the Program Data Vector that is created only 
with the DATA step. Macro functions are applied to text 
values (often supplied by a macro variable) but not to DATA 
set variables. 

 

REASONS TO USE THE MACRO FACILITY 
3.  Macro functions can improve the functionality of macro 
variables. 

STEP 4 
CREATE A MACRO VARIABLE FROM A SAS DATA SET. 
One limitation of the previous steps is that you must run the 
MEANS procedure and determine the value of the average room 
rate before creating the macro variable AVERAGE with the %LET 
statement. A more useful technique would be to create the 
average value in a SAS data set and store that value in a macro 
variable without having to type the %LET. 
 
In addition, you might want to format the date in the TITLE 
statement rather than using the default format of the SYSDATE9 
automatic macro variable. 
 
To store data set variables in a macro variable, you cannot use 
the %LET statement. One technique that you can utilize is the 
CALL SYMPUT routine. The CALL SYMPUT routine is used only 
in a DATA step and can 
• create a macro variable that contains constant text value, value 

of a DATA step variable, or value of a macro variable 
• use data step functions to create the value for a macro variable 
• assign a value to a macro variable using DATA step logic.  
 

options symbolgen; 
  
%let dsn=expenses; 
%let varlist=ResortName RoomRate Food; 
 
/* Create a SAS data set rather than */ 
/* a report with PROC MEANS.         */ 
 
proc means data=&dsn noprint; 
   output out=stats mean=avg; 
   var RoomRate; 
run; 
 

data _null_;  ① 
   set stats; 

   dt=put(today(),mmddyy10.); ② 

   call symput('date',dt); ③ 

   call symput('average',put(avg,7.2));④ 
run; 
 
proc print data=&dsn; 
   title "Lowest Priced Hotels in the  
          %upcase(&dsn) Data Set"; 
   footnote "On &date"; 
   var &varlist; 
   where RoomRate<=&average; 
run; 

 
① DATA _NULL_ enables you to use the data step syntax 
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without creating a data set. Since you only want to create a 
macro variable, using DATA _NULL_ is more efficient than 
creating a data set in addition to the macro variable as the 
DATA DataSetName syntax would do. 

② The PUT function uses the TODAY() function to retrieve 
today's date as a SAS date and to create a data step variable 
containing the date in the form 06/01/2003. 

③ In the CALL SYMPUT syntax, the first argument is the name 
of the macro variable, and the second argument is the value 
to store in the macro variable. Since the name of the macro 
variable is a constant, it is enclosed in quotation marks. The 
value to be stored is a data set variable; therefore, it is not 
enclosed in quotation marks. 
When you create macro variables with CALL SYMPUT, the 
values of the macro variables are stored in an area of 
memory that is called the global symbol table. When your 
SAS session is over, the global symbol table is deleted. 
Steps 2 and 3 could be combined into the statement 
call symput('date', put(today(), mmddyy10.)); 

④ The PUT function creates a character value to be stored in 
the macro variable named AVERAGE. Since macro variable 
values are stored as text, using the PUT function creates 
character values thus avoiding the problems of implicit 
numeric to character conversions. 

 

REASONS TO USE THE MACRO FACILITY 
4.  Macro variables can get values from a data set. 
 
Instead of creating the DATE macro variable to format the date in 
the footnote, you can use the %SYSFUNC function. The 
%SYSFUNC function uses DATA step functions in statements 
such as the TITLE or FOOTNOTE statements that could not 
normally use DATA step functions. For example, the footnote 
could be recoded as: 

footnote "On %sysfunc(today(), mmddyy10.)"; 

STEP 5: 
MAKE THE PROGRAM INTO A MACRO DEFINITION. 
Suppose you want to make the program even more dynamic or 
perhaps you need to make the code reusable. In that case, the 
first stage is to convert the program into a macro definition.  
 

%let dsn=expenses; 
%let varlist=ResortName RoomRate Food; 
 

%macro vacation; ① 
 
proc means data=&dsn noprint; 
   output out=stats mean=avg; 
   var RoomRate; 
run; 
 
data _null_; 
   set stats; 
   dt= put(today(),mmddyy10.); 
   call symput('date',dt); 
   call symput('average',put(avg,7.2)); 
run; 
 
proc print data=&dsn; 
   title "Lowest Priced Hotels in the  
          %upcase(&dsn) Data Set"; 
   footnote "On &date"; 
   var &varlist; 
   where RoomRate<=&average; 
run; 
  

%mend vacation;  ② 

 

options symbolgen mprint;  ③ 

%vacation  ④  
 
① Start the macro definition with  

%MACRO MacroName; 
where the name of the macro can be up to 32 characters in 
length. 

② End the macro with  
%MEND MacroName; 

By default, when you submit the code for the macro definition, 
SAS stores the compiled macro routine in a catalog named 
WORK.SASMACR; however, there are techniques to store 
the macro definition permanently. For more information about 
the methods to store a macro definition permanently, consult 
the SAS® Macro Language: Reference. 

③ By default, when you use the macro definition, the program 
for the macro definition is not printed in the log. To help with 
debugging, use the global system option MPRINT to view the 
macro code with the macro variables resolved.  

④ To invoke the macro definition, use: 
%MacroName 

Notice there is no semicolon at the end of the %VACATION 
statement. It is wise not to put a semicolon at the end of the 
macro call in case you end a program statement prematurely. 
When you call the macro %VACATION, by default, SAS 
looks in the catalog WORK.SASMACR for the VACATION 
macro and executes the macro code. 

 

REASONS TO USE THE MACRO FACILITY 
5. Macro definitions make your code reusable. 

STEP 6:  
USE PARAMETERS IN THE MACRO AND SPECIFY THE 
PARAMETERS WHEN THE MACRO IS CALLED. 
Rather than providing the macro variable values by using %LET 
statements, you can use parameters. The names of the 
parameters are the names of the macro variables used in the 
program. 
 

%macro vacation(dsn,varlist);  ① 
 
proc means data=&dsn noprint; 
   output out=stats mean=avg; 
   var RoomRate; 
run; 
 
data _null_; 
   set stats; 
   dt=put(today(),mmddyy10.); 
   call symput('date',dt); 
   call symput('average',put(avg,7.2)); 
run; 
 
proc print data=&dsn; 
   title "Lowest Priced Hotels in the  
          %upcase(&dsn) Data Set"; 
   footnote "On &date"; 
   var &varlist; 
   where RoomRate<=&average; 
run; 
 
%mend; 
 
options symbolgen mprint; 

%vacation(expenses,ResortName RoomRate)  ② 
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① Using parenthesis, specify positional parameters for the 
macro variables, separated by commas. 

② To call the macro containing positional parameters, specify 
values within parenthesis, separated by commas, in the order 
of the parameters. When you use positional parameters, the 
macro variables are stored in an area of memory called a 
local symbol table. Since the CALL SYMPUT is executed 
within this macro definition, the local symbol table also 
contains the DT and AVERAGE macro variables. The local 
symbol table is deleted when the macro definition completes 
execution. 

 

REASONS TO USE THE MACRO FACILITY 
6. Macro definitions can use parameters to change and modify 

code based on those parameters. 

STEP 7:  
CHANGE THE MACRO DEFINITION TO PROVIDE DEFAULT 
VALUES FOR THE MACRO VARIABLES. 
If you use positional parameters, you must provide those 
parameters each time you invoke the macro definition. Perhaps 
you want to specify a default value for those parameters. In that 
case, try keyword parameters. 
 

%macro vacation(dsn=expenses,varlist=_all_);   

                                           ① 
proc means data=&dsn noprint; 
   output out=stats mean=avg; 
   var RoomRate; 
run; 
 
data _null_; 
   set stats; 
   dt=put(today(),mmddyy10.); 
   call symput('date',dt); 
   call symput('average',put(avg,7.2)); 
run; 
 
proc print data=&dsn; 
   title "Lowest Priced Hotels in the  
          %upcase(&dsn) Data Set"; 
   footnote "On &sysdate9"; 
   var &varlist; 
   where RoomRate<=&average; 
run; 
 
%mend; 
 
options symbolgen mprint; 
 

%vacation(dsn=hexpenses,varlist=ResortName)② 

%vacation(varlist=ResortName RoundOfGolf)  ③ 
 

%vacation()  ④ 

 
① The parameters are now keyword parameters that are given 

default values using 
KEYWORD=value 

Just like with positional parameters, with keyword 
parameters, commas separate the parameters. Keyword 
parameters and positional parameters can both be used; 
positional parameters must be specified first in the syntax. 

② To use the macro definition, specify the value of the 
parameter by specifying the KEYWORD=value syntax, not 
necessarily in the order they are specified when the macro 
routine was defined. In other words, you could use 

%vacation(varlist=ResortName, dsn=hexpenses) 

 
When you use keyword parameters, the macro variables are 
stored in an area of memory called a local symbol table. The 
local symbol table is deleted when the macro definition 
completes execution. 

③ You do not have to specify a KEYWORD=value. If you do 
not, the default is used. If you specify a value, you must use 
the KEYWORD=value syntax. 

④ To use the defaults for both parameters, use the parentheses 
with no parameters. 

 

REASONS TO USE THE MACRO FACILITY 
7. Macro definitions, with keyword parameters, can set defaults 

for the parameters. 

STEP 8 
USE PROC SQL TO CREATE THE MACRO VARIABLES. 
The previous code uses PROC MEANS to store the average 
value in a data set variable and the DATA step to create the 
macro variable. If you use the SQL procedure, you avoid using 
two steps to store the MEAN statistic in a macro variable. 
 

%macro vacation(dsn=expenses,varlist=_all_); 
 

proc sql noprint;  ① 

   select mean(RoomRate),  ② 

          put(today(),mmddyy10.)  ③ 

      into :average, :date  ④ 
      from &dsn; 
quit; 
 
proc print data=&dsn; 
   title "Lowest Priced Hotels in the 
          %upcase(&dsn) Data Set"; 
   footnote "On &date"; 
   var &varlist; 
   where RoomRate<=&average; 
run; 
  
%mend; 
 
options symbolgen mprint; 
 
%vacation(dsn=newexpenses) 
 
%vacation(varlist=ResortName) 
 

① Use the SQL procedure with the NOPRINT option to create a 
macro variable without having a printed report. Because the 
macro variables are created within a macro definition code, 
they are stored in the local symbol table. 

② Selecting MEAN(ROOMRATE) calculates the statistic for the 
ROOMRATE column for the entire data set.  

③ Selecting the constant stores the date in the macro variable 
DATE. 

④ The INTO :macroname, :macroname syntax stores the 
values of the average ROOMRATE and today's date in the 
MMDDYY10. format in the macro variables AVERAGE and 
DATE. 

 

REASONS TO USE THE MACRO FACILITY 
8. The SQL procedure can calculate statistics and create macro 

variables containing those statistics in one step. 
 

SUGI 28 Beginning Tutorials



- 5 - 

STEP 9:  
USE THE %IF…%THEN/%ELSE STATEMENTS WITHIN A 
MACRO DEFINITION TO EXECUTE CODE CONDITIONALLY. 
The final step in printing a list of the lowest priced hotels in the 
summer and a list of all hotels during the rest of the year is to 
execute PROC PRINT conditionally. Since conditional logic using 
IF…THEN/ELSE statements is available only in the DATA step, 
you cannot execute procedures conditionally. However, that is 
exactly what you want to do. You want to write a program like 
this: 

If it is June, July, or August, PROC PRINT 
the cheapest hotels; else PROC PRINT all the 
hotels.  

Using the %IF…%THEN/%ELSE statements in a macro 
definition makes this possible. 
 

%macro vacation(dsn=expenses,varlist=_all_); 
 
proc sql noprint; 
   select mean(RoomRate), 
          put(today(),mmddyy10.), 
          month(today()) 

      into :average,:date,:mon ① 
      from &dsn; 
 

%if &mon=6 or &mon =7 or &mon =8 %then %do;② 
   proc print data=&dsn; 
   title "Lowest Priced Hotels in the   
          %upcase(&dsn) Data Set"; 
      footnote "On &date"; 
      var &varlist; 
      where RoomRate<=&average; 
   run; 

%end; ③ 
 

%else %do; ④ 
   proc print data=&dsn; 
      title "All Room Information in the  
             %upcase(&dsn) Data Set"; 
      footnote "On &date"; 
      var &varlist; 
   run; 
%end; 
%mend; 
 

options symbolgen mprint mlogic;  ⑤ 
%vacation( ) 

 
① Create one more macro variable in the PROC SQL step. The 

macro variable, MON, stores the MONTH(today()). 
② Use the %IF…%THEN/%ELSE statements to compare the 

MON macro variable with the constants 6, 7, or 8 in order to 
print the cheapest hotel when today's date is in June, July or 
August. (You cannot use the IN operator in the 
%IF…%THEN/%ELSE statements.) 

③ The %END statement ends the %DO group. 
④ The %ELSE %DO group executes the PRINT procedure 

showing all hotels when the macro definition is executed for 
any month other than June, July, or August. 

⑤ The MLOGIC system option prints the value of the condition 
&mon=6 or &mon=7 or &mon=8 in the log. MLOGIC is useful 
for debugging. 

 

REASONS TO USE THE MACRO FACILITY 
9. Macro definitions enable conditional execution of steps, 

statements, or parts of statements. 

The previous macro program for VACATION executes the PROC 
PRINT step conditionally. It is not necessary to execute an entire 
step in %IF…%THEN/%ELSE logic. You can execute just an 
individual statement. Rewriting the previous program to execute 
only the TITLE and WHERE statements conditionally gives you 
the following program. 
 

%macro vacation(dsn=expenses,varlist=_all_); 
 
proc sql noprint; 
   select mean(RoomRate), 
          put(today(),mmddyy10.), 
          month(today()) 
      into :average,:date,:mon  
      from &dsn; 
 
proc print data=&dsn; 
   footnote "On &date"; 
   var &varlist; 
 
%if &mon=6 or &mon=7 or &mon=8 %then %do;  
   title "Lowest Priced Hotels in the   
          %upcase(&dsn) Data Set"; 
   where RoomRate<=&average; 
%end;  
 

%else %do;  ① 
   title "All Room Information in the  
          %upcase(&dsn) Data Set"; 
%end; 
 

run;  ② 
 
%mend; 

 
① The second TITLE statement is in a %ELSE %DO - %END 

group to ensure that the semicolon that ends the TITLE 
statement is compiled correctly.  

② The RUN statement is always executed. 

CONCLUSION 
Using macro variables and/or macro definitions can help you 
write code that is flexible and dynamic. Though macros will not 
make your code more efficient, they can certainly make you a 
more efficient programmer. Begin with hard coding the program, 
advance though creating macro variables, and finish off with 
writing a macro definition. Soon you will be creating programs 
that almost write themselves. 
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