
Paper 56-28

- 1 -

Nine Steps to Get Started using SAS® Macros
Jane Stroupe, SAS Institute, Chicago, IL

ABSTRACT
Have you ever heard your coworkers rave about macros? If so,
you've probably wondered what all the fuss was about. This
introductory tutorial unravels the mystery of why and how you use
the SAS macro facility. In the nine easy steps outlined in this
paper, you follow the process of testing your code, substituting
macro variables into the code, and turning your SAS program into
a macro definition with conditional processing.

INTRODUCTION
The macro facility is comprised of two components:
• macro variables
• macro definitions.

Simply put, the purpose of both of these is text substitution.
Utilizing the macro facility can make your code
• easy to maintain
• flexible
• dynamic.

You can write a macro definition to execute code conditionally in
nine steps.

The macro definition developed in this tutorial prints hotel
information from a SAS data set named EXPENSES that is
updated with resorts' costs and amenities as they change. You
need to run the program often in order to monitor any changes. In
this example, if you submit the program in June, July, or August,
you want to print a list of the cheapest hotels (those with room
rates less than the average room rate for the entire data set.)
Otherwise, you want to print a list of all the hotels in the data.

STEP 1:
WRITE YOUR PROGRAM AND MAKE SURE IT WORKS.
One of the macro tricks is to make sure that your code executes
correctly and efficiently before you begin the process of
'macroizing' the program. It is much easier to debug your code
when it is not in a macro or does not reference macro variables.
So hard code your program and check it out first.

proc means data=expenses mean;
 var RoomRate;
run;

Analysis Variable : RoomRate

Mean

 221.1090000

After looking at the output report to determine the average value,
submit the PRINT procedure step with a WHERE statement.

proc print data=expenses;
 title 'Lowest Priced Hotels in the
 EXPENSES Data Set';
 footnote 'On June 1, 2003';
 var ResortName RoomRate Food;
 where RoomRate<=221.109;
run;

When you run the program on June 1, the following report is
generated.

Lowest Priced Hotels in the EXPENSES Data Set

 Obs ResortName RoomRate Food

 1 Joe's Pretty Good Resort & Bait Shop 165.89 45.5
 2 Larry, Curly, and Motel 178.9 64
 3 Sand And Shores 215.32 76
 4 Array of Sun Hotel 210.78 54
 5 Report Resort 189.87 49
 7 Dew Drop Inn 197.12 45
 10 Come On Inn 187.98 36

.
.
.

On June 1, 2003

REASONS TO USE THE MACRO FACILITY
1. The macro facility can automatically change this program

every time you access the data set or the EXPENSES file
updates.

STEP 2:
USE MACRO VARIABLES TO FACILITATE TEXT
SUBSTITUTION.
One technique for making a change to the program is to replace
text by utilizing the REPLACE feature of your operating
environment; however, there are downsides of that technique. For
example, you might accidentally change a word that you do not
want changed, or you might have to avoid that problem by using
FIND REPLACE repetitively. Furthermore, you must repeat the
process every time you want to change the program.

Instead of replacing values manually, let SAS macro variables do
it for you. Macro variables provide text substitution that you
typically use for individual words or phrases, rather than for
blocks of code. There are
• automatic macro variables such as the date on which you

invoked SAS
• user-defined macro variables created with the %LET statement
• user-defined macro variables created with the CALL SYMPUT

routine in a DATA step or with the SQL procedure.

Regardless of how you create the macro variables, to reference
them in your program, preface the name of the macro variable
with an &.

options symbolgen; ①

%let dsn=expenses; ②
%let varlist=ResortName RoomRate Food;

proc means data=&dsn mean;
 var RoomRate;
run;

/* You still have to look at the report */
/* to determine the average amount. */

%let average=221.109;

SUGI 28 Beginning Tutorials

- 2 -

proc print data=&dsn;

 title "Lowest Priced Hotels in the &dsn ③
 Data Set";

 footnote "On &sysdate9"; ④
 var &varlist;
 where RoomRate<=&average;
run;

① The global system option SYMBOLGEN prints in your log

how the macro variable is resolved. Without it, your macro
substitution is difficult to debug. When your macro variables
substitute perfectly, you can turn the option off by submitting
 options nosymbolgen;

② To create a macro variable with a %LET statement, use
%LET MacroVariableName=MacroVariableValue;
The name of a macro variable can be up to 32 characters in
length; the value can be up to 64K in length. Typically, the
macro variable value is not enclosed in quotation marks since
the macro facility assumes that the macro variable value is
text. If you do put quotation marks around the word expenses
or the value 221.109, the quotation marks are stored as part
of the value. When you create macro variables with %LET,
the values of the macro variables are stored in an area of
memory that is called the global symbol table. When your
SAS session is over, the global symbol table is deleted.

③ To reference a macro variable use an & immediately before
the name of the macro variable. SAS then substitutes the
value of the macro variable into the code before it is
compiled. When using a macro variable in a TITLE statement
(or in fact, any time you would normally use single quotation
marks), you must put the quoted text in double quotation
marks. The macro facility cannot do text substitution when
there are single quotation marks.

④ The automatic macro variable SYSDATE9 is the date on
which you invoked SAS. &SYSDATE9 prints the date as
01JUN2003. There is another automatic macro variable,
&SYSDATE, that prints the date as 01JUN03.

REASONS TO USE THE MACRO FACILITY
2. Macro variables make your code easy to maintain.

STEP 3:
USE A MACRO FUNCTION TO CAPITALIZE THE NAME OF
THE DATA SET.
The case of the macro variable value is the same as the case in
which it was typed in the %LET statement. If you want to ensure
that the word "EXPENSES" is in upper case in the title, you can
use the %UPCASE function. The %UPCASE function is one of
many functions that can have macro variables as arguments.
Other functions such as %SCAN and %SUBSTR can be used for
more complicated applications.

options symbolgen;

%let dsn=expenses;
%let varlist=ResortName RoomRate Food;

proc means data=&dsn mean;
 var RoomRate;
run;

%let average=221.109;

proc print data=&dsn;
 title "Lowest Priced Hotels in the

 %upcase(&dsn) Data Set"; ①
 footnote "On &sysdate9";

 var &varlist;
 where RoomRate<=&average;
run;

① The macro variable functions like %UPCASE can be used in
statements in which, by default, DATA step functions cannot
be used. DATA step functions are applied to values in a
buffer called the Program Data Vector that is created only
with the DATA step. Macro functions are applied to text
values (often supplied by a macro variable) but not to DATA
set variables.

REASONS TO USE THE MACRO FACILITY
3. Macro functions can improve the functionality of macro
variables.

STEP 4
CREATE A MACRO VARIABLE FROM A SAS DATA SET.
One limitation of the previous steps is that you must run the
MEANS procedure and determine the value of the average room
rate before creating the macro variable AVERAGE with the %LET
statement. A more useful technique would be to create the
average value in a SAS data set and store that value in a macro
variable without having to type the %LET.

In addition, you might want to format the date in the TITLE
statement rather than using the default format of the SYSDATE9
automatic macro variable.

To store data set variables in a macro variable, you cannot use
the %LET statement. One technique that you can utilize is the
CALL SYMPUT routine. The CALL SYMPUT routine is used only
in a DATA step and can
• create a macro variable that contains constant text value, value

of a DATA step variable, or value of a macro variable
• use data step functions to create the value for a macro variable
• assign a value to a macro variable using DATA step logic.

options symbolgen;

%let dsn=expenses;
%let varlist=ResortName RoomRate Food;

/* Create a SAS data set rather than */
/* a report with PROC MEANS. */

proc means data=&dsn noprint;
 output out=stats mean=avg;
 var RoomRate;
run;

data _null_; ①
 set stats;

 dt=put(today(),mmddyy10.); ②

 call symput('date',dt); ③

 call symput('average',put(avg,7.2));④
run;

proc print data=&dsn;
 title "Lowest Priced Hotels in the
 %upcase(&dsn) Data Set";
 footnote "On &date";
 var &varlist;
 where RoomRate<=&average;
run;

① DATA _NULL_ enables you to use the data step syntax

SUGI 28 Beginning Tutorials

- 3 -

without creating a data set. Since you only want to create a
macro variable, using DATA _NULL_ is more efficient than
creating a data set in addition to the macro variable as the
DATA DataSetName syntax would do.

② The PUT function uses the TODAY() function to retrieve
today's date as a SAS date and to create a data step variable
containing the date in the form 06/01/2003.

③ In the CALL SYMPUT syntax, the first argument is the name
of the macro variable, and the second argument is the value
to store in the macro variable. Since the name of the macro
variable is a constant, it is enclosed in quotation marks. The
value to be stored is a data set variable; therefore, it is not
enclosed in quotation marks.
When you create macro variables with CALL SYMPUT, the
values of the macro variables are stored in an area of
memory that is called the global symbol table. When your
SAS session is over, the global symbol table is deleted.
Steps 2 and 3 could be combined into the statement
call symput('date', put(today(), mmddyy10.));

④ The PUT function creates a character value to be stored in
the macro variable named AVERAGE. Since macro variable
values are stored as text, using the PUT function creates
character values thus avoiding the problems of implicit
numeric to character conversions.

REASONS TO USE THE MACRO FACILITY
4. Macro variables can get values from a data set.

Instead of creating the DATE macro variable to format the date in
the footnote, you can use the %SYSFUNC function. The
%SYSFUNC function uses DATA step functions in statements
such as the TITLE or FOOTNOTE statements that could not
normally use DATA step functions. For example, the footnote
could be recoded as:

footnote "On %sysfunc(today(), mmddyy10.)";

STEP 5:
MAKE THE PROGRAM INTO A MACRO DEFINITION.
Suppose you want to make the program even more dynamic or
perhaps you need to make the code reusable. In that case, the
first stage is to convert the program into a macro definition.

%let dsn=expenses;
%let varlist=ResortName RoomRate Food;

%macro vacation; ①

proc means data=&dsn noprint;
 output out=stats mean=avg;
 var RoomRate;
run;

data _null_;
 set stats;
 dt= put(today(),mmddyy10.);
 call symput('date',dt);
 call symput('average',put(avg,7.2));
run;

proc print data=&dsn;
 title "Lowest Priced Hotels in the
 %upcase(&dsn) Data Set";
 footnote "On &date";
 var &varlist;
 where RoomRate<=&average;
run;

%mend vacation; ②

options symbolgen mprint; ③

%vacation ④

① Start the macro definition with

%MACRO MacroName;
where the name of the macro can be up to 32 characters in
length.

② End the macro with
%MEND MacroName;

By default, when you submit the code for the macro definition,
SAS stores the compiled macro routine in a catalog named
WORK.SASMACR; however, there are techniques to store
the macro definition permanently. For more information about
the methods to store a macro definition permanently, consult
the SAS® Macro Language: Reference.

③ By default, when you use the macro definition, the program
for the macro definition is not printed in the log. To help with
debugging, use the global system option MPRINT to view the
macro code with the macro variables resolved.

④ To invoke the macro definition, use:
%MacroName

Notice there is no semicolon at the end of the %VACATION
statement. It is wise not to put a semicolon at the end of the
macro call in case you end a program statement prematurely.
When you call the macro %VACATION, by default, SAS
looks in the catalog WORK.SASMACR for the VACATION
macro and executes the macro code.

REASONS TO USE THE MACRO FACILITY
5. Macro definitions make your code reusable.

STEP 6:
USE PARAMETERS IN THE MACRO AND SPECIFY THE
PARAMETERS WHEN THE MACRO IS CALLED.
Rather than providing the macro variable values by using %LET
statements, you can use parameters. The names of the
parameters are the names of the macro variables used in the
program.

%macro vacation(dsn,varlist); ①

proc means data=&dsn noprint;
 output out=stats mean=avg;
 var RoomRate;
run;

data _null_;
 set stats;
 dt=put(today(),mmddyy10.);
 call symput('date',dt);
 call symput('average',put(avg,7.2));
run;

proc print data=&dsn;
 title "Lowest Priced Hotels in the
 %upcase(&dsn) Data Set";
 footnote "On &date";
 var &varlist;
 where RoomRate<=&average;
run;

%mend;

options symbolgen mprint;

%vacation(expenses,ResortName RoomRate) ②

SUGI 28 Beginning Tutorials

- 4 -

① Using parenthesis, specify positional parameters for the
macro variables, separated by commas.

② To call the macro containing positional parameters, specify
values within parenthesis, separated by commas, in the order
of the parameters. When you use positional parameters, the
macro variables are stored in an area of memory called a
local symbol table. Since the CALL SYMPUT is executed
within this macro definition, the local symbol table also
contains the DT and AVERAGE macro variables. The local
symbol table is deleted when the macro definition completes
execution.

REASONS TO USE THE MACRO FACILITY
6. Macro definitions can use parameters to change and modify

code based on those parameters.

STEP 7:
CHANGE THE MACRO DEFINITION TO PROVIDE DEFAULT
VALUES FOR THE MACRO VARIABLES.
If you use positional parameters, you must provide those
parameters each time you invoke the macro definition. Perhaps
you want to specify a default value for those parameters. In that
case, try keyword parameters.

%macro vacation(dsn=expenses,varlist=_all_);

 ①
proc means data=&dsn noprint;
 output out=stats mean=avg;
 var RoomRate;
run;

data _null_;
 set stats;
 dt=put(today(),mmddyy10.);
 call symput('date',dt);
 call symput('average',put(avg,7.2));
run;

proc print data=&dsn;
 title "Lowest Priced Hotels in the
 %upcase(&dsn) Data Set";
 footnote "On &sysdate9";
 var &varlist;
 where RoomRate<=&average;
run;

%mend;

options symbolgen mprint;

%vacation(dsn=hexpenses,varlist=ResortName)②

%vacation(varlist=ResortName RoundOfGolf) ③

%vacation() ④

① The parameters are now keyword parameters that are given

default values using
KEYWORD=value

Just like with positional parameters, with keyword
parameters, commas separate the parameters. Keyword
parameters and positional parameters can both be used;
positional parameters must be specified first in the syntax.

② To use the macro definition, specify the value of the
parameter by specifying the KEYWORD=value syntax, not
necessarily in the order they are specified when the macro
routine was defined. In other words, you could use

%vacation(varlist=ResortName, dsn=hexpenses)

When you use keyword parameters, the macro variables are
stored in an area of memory called a local symbol table. The
local symbol table is deleted when the macro definition
completes execution.

③ You do not have to specify a KEYWORD=value. If you do
not, the default is used. If you specify a value, you must use
the KEYWORD=value syntax.

④ To use the defaults for both parameters, use the parentheses
with no parameters.

REASONS TO USE THE MACRO FACILITY
7. Macro definitions, with keyword parameters, can set defaults

for the parameters.

STEP 8
USE PROC SQL TO CREATE THE MACRO VARIABLES.
The previous code uses PROC MEANS to store the average
value in a data set variable and the DATA step to create the
macro variable. If you use the SQL procedure, you avoid using
two steps to store the MEAN statistic in a macro variable.

%macro vacation(dsn=expenses,varlist=_all_);

proc sql noprint; ①

 select mean(RoomRate), ②

 put(today(),mmddyy10.) ③

 into :average, :date ④
 from &dsn;
quit;

proc print data=&dsn;
 title "Lowest Priced Hotels in the
 %upcase(&dsn) Data Set";
 footnote "On &date";
 var &varlist;
 where RoomRate<=&average;
run;

%mend;

options symbolgen mprint;

%vacation(dsn=newexpenses)

%vacation(varlist=ResortName)

① Use the SQL procedure with the NOPRINT option to create a
macro variable without having a printed report. Because the
macro variables are created within a macro definition code,
they are stored in the local symbol table.

② Selecting MEAN(ROOMRATE) calculates the statistic for the
ROOMRATE column for the entire data set.

③ Selecting the constant stores the date in the macro variable
DATE.

④ The INTO :macroname, :macroname syntax stores the
values of the average ROOMRATE and today's date in the
MMDDYY10. format in the macro variables AVERAGE and
DATE.

REASONS TO USE THE MACRO FACILITY
8. The SQL procedure can calculate statistics and create macro

variables containing those statistics in one step.

SUGI 28 Beginning Tutorials

- 5 -

STEP 9:
USE THE %IF…%THEN/%ELSE STATEMENTS WITHIN A
MACRO DEFINITION TO EXECUTE CODE CONDITIONALLY.
The final step in printing a list of the lowest priced hotels in the
summer and a list of all hotels during the rest of the year is to
execute PROC PRINT conditionally. Since conditional logic using
IF…THEN/ELSE statements is available only in the DATA step,
you cannot execute procedures conditionally. However, that is
exactly what you want to do. You want to write a program like
this:

If it is June, July, or August, PROC PRINT
the cheapest hotels; else PROC PRINT all the
hotels.

Using the %IF…%THEN/%ELSE statements in a macro
definition makes this possible.

%macro vacation(dsn=expenses,varlist=_all_);

proc sql noprint;
 select mean(RoomRate),
 put(today(),mmddyy10.),
 month(today())

 into :average,:date,:mon ①
 from &dsn;

%if &mon=6 or &mon =7 or &mon =8 %then %do;②
 proc print data=&dsn;
 title "Lowest Priced Hotels in the
 %upcase(&dsn) Data Set";
 footnote "On &date";
 var &varlist;
 where RoomRate<=&average;
 run;

%end; ③

%else %do; ④
 proc print data=&dsn;
 title "All Room Information in the
 %upcase(&dsn) Data Set";
 footnote "On &date";
 var &varlist;
 run;
%end;
%mend;

options symbolgen mprint mlogic; ⑤
%vacation()

① Create one more macro variable in the PROC SQL step. The

macro variable, MON, stores the MONTH(today()).
② Use the %IF…%THEN/%ELSE statements to compare the

MON macro variable with the constants 6, 7, or 8 in order to
print the cheapest hotel when today's date is in June, July or
August. (You cannot use the IN operator in the
%IF…%THEN/%ELSE statements.)

③ The %END statement ends the %DO group.
④ The %ELSE %DO group executes the PRINT procedure

showing all hotels when the macro definition is executed for
any month other than June, July, or August.

⑤ The MLOGIC system option prints the value of the condition
&mon=6 or &mon=7 or &mon=8 in the log. MLOGIC is useful
for debugging.

REASONS TO USE THE MACRO FACILITY
9. Macro definitions enable conditional execution of steps,

statements, or parts of statements.

The previous macro program for VACATION executes the PROC
PRINT step conditionally. It is not necessary to execute an entire
step in %IF…%THEN/%ELSE logic. You can execute just an
individual statement. Rewriting the previous program to execute
only the TITLE and WHERE statements conditionally gives you
the following program.

%macro vacation(dsn=expenses,varlist=_all_);

proc sql noprint;
 select mean(RoomRate),
 put(today(),mmddyy10.),
 month(today())
 into :average,:date,:mon
 from &dsn;

proc print data=&dsn;
 footnote "On &date";
 var &varlist;

%if &mon=6 or &mon=7 or &mon=8 %then %do;
 title "Lowest Priced Hotels in the
 %upcase(&dsn) Data Set";
 where RoomRate<=&average;
%end;

%else %do; ①
 title "All Room Information in the
 %upcase(&dsn) Data Set";
%end;

run; ②

%mend;

① The second TITLE statement is in a %ELSE %DO - %END

group to ensure that the semicolon that ends the TITLE
statement is compiled correctly.

② The RUN statement is always executed.

CONCLUSION
Using macro variables and/or macro definitions can help you
write code that is flexible and dynamic. Though macros will not
make your code more efficient, they can certainly make you a
more efficient programmer. Begin with hard coding the program,
advance though creating macro variables, and finish off with
writing a macro definition. Soon you will be creating programs
that almost write themselves.

TRADEMARKS
SAS® and all other SAS Institute Inc. product or service names
are registered trademarks or trademarks of SAS Institute Inc. in
the USA and other countries. ® indicates USA registration.

Other brands and product names are trademarks of their
respective companies.

REFERENCES
SAS OnlineDoc®
SAS® Macro Language: Reference
Course notes for SAS Macro class.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at:

Jane Stroupe
SAS Institute
Chicago IL

SUGI 28 Beginning Tutorials

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

	contact56-28: 312/819-6800 ext 8823 Email: Jane.Stroupe@sas.com

