
Paper 040-29

Helpful Undocumented Features in SAS®

Wei Cheng, ISIS Pharmaceuticals, Inc., Carlsbad, CA

ABSTRACT

The SAS OnlineDoc and the built-in SAS System Help contains comprehensive documentation and references to help SAS
users. But we can still find some features that are not well documented or are not documented at all. This paper will try to document
some of these undocumented features, so you can use them in the SAS programming.

INTRODUCTION

When we read other people’s programs, we see options that we can’t find documentated in the SAS OnlineDoc. When we read
some papers, most often written by the developers from the SAS Institute, undocumented features are unveiled. When we ask
questions or report problems to the SAS Institute technical support, we receive solutions from them that are not documented.

This paper will document some of these undocumented features. Some of them will help SAS programmers to improve their
programming efficiency, some will help SAS programmers understand the SAS system better, and some will remove the surprise
when SAS programmers see the unexpected behaviour of the SAS system.

First, let’s generate some dummy data for testing purpose:

data testdata1;
 do id = 1 to 100;
 x = ceil (ranuni(0) * 100);
 charx = put (x, z2. -L);
 output;
 end;
run;

data testdata2;
 do id = 1 to 100;
 y = ceil (ranuni(0) * 100);
 output;
 end;
run;

FUNCTION MONOTONIC() IN PROC SQL

The automatic variable _N_ in DATA step processing counts the number of times the DATA step begins to iterate. It’s very useful
when you need the iteration number from the DATA step. Since PROC SQL uses a relational database concept that is different from
the DATA step, we can’t get the iteration number from the PROC SQL procedure. An undocumented function, MONOTONIC(), in
PROC SQL that can generate very similar result as the _N_ in DATA step. Look at the following example:

Example 1:

proc sql;
 select monotonic() as rowno, *
 from testdata2
 where monotonic() le 10;
quit;

The above program will generate the output:

 rowno id y

 1 1 66
 2 2 32
 3 3 10
 4 4 24
 5 5 50
 6 6 73
 7 7 40
 8 8 45
 9 9 88
 10 10 65

1

 SUGI 29 Coders' Corner

So we can treat the MONOTONIC() function in PROC SQL as the _N_ in DATA step if we need to use the row number of the table
in PROC SQL.

COLON (:) MODIFIER COUNTERPART IN PROC SQL

In the DATA step, a colon (:) modifier after any operator can be used to compare only a specified prefix of a character string. In
PROC SQL, the following truncated string comparison operators are available: EQT, GTT, LTT, GET, LET, NET, etc.

These operators compare two strings after making the strings the same length by truncating the longer string to the same length as
the shorter string.

Example 2:

proc sql;
 select *
 from testdata1
 where charx eqt '0';
quit;

The above program will generate the output:

 id x charx

 4 2 02
 36 3 03
 39 6 06
 46 9 09
 48 3 03
 55 9 09
 57 5 05
 75 4 04
 84 2 02
 90 9 09

These operators will be documented in the next release of SAS.

INDEXW() BEHAVIOUR

The SAS OnlineDoc does not document what happens when the second argument for INDEXW() is blank. A little birdie from the
SAS Institute unveiled the mystery from the source code. The rule is:

If the second argument contains only blanks or has a length of zero, then:
If the first argument contains only blanks or has a length of zero, INDEXW returns 1;
Otherwise, INDEXW returns 0.

Example 3:

data _null_;
 result1 = indexw(' ',' '); put result1 =;
 result2 = indexw(' ', ''); put result2 =;
 result3 = indexw('',' '); put result3 =;
 result4 = indexw('Any Chars',' '); put result4 =;
run;

The above program will generate the log:

result1=1
result2=1
result3=1
result4=0

FILE NAME LIMIT IN PROC EXPORT

When using PROC EXPORT to export SAS data sets to Excel files, the length of the whole name of the Excel file including the path
cannot exceed 64 characters. Usually you won’t have an Excel file name that exceeds 64 characters, but you may have a long path
for the location of the file. You either need to change the location of the file or use the driver mapping to make the path shorter.

2

 SUGI 29 Coders' Corner

“SECRET” SYSTEM OPTIONS

If you want to view the “secret” SAS system options, add the undocumented option INTERNAL to the PROC OPTIONS statement:

Example 4:

proc options internal; run;

The above program will display the options below in the SAS LOG file with descriptions:

Internal Portable Options:

 NOAUTOSP Do not load stored DATA step programs
 NOBOOTSTRAP SASHELP.CORE is available at SAS Session Startup
 BUFMAX=0 Maximum page size for SAS data sets
 BUFOBS=80 Number of OBS in page of SAS data set
 CBUFSIZE=0 Size of buffers to use for SAS catalogs
 CGOPTIMIZE=3 >>Option Description Needed<<
 COLUMNS=80 >>Option Description Needed<<
 DEBUG=JUNK Internal debugging specification
 DSOPTIONS= Internal DATA step execution options
 NOFORMATLOG Do not format the log file
 ……

DISPLAY THE OPTIONS BY GROUP

If you want to display the options by group, specify a group-name to the option GROUP in the PROC OPTIONS statement:

Example 5:

proc options group = inputcontrol; run ;

The above program will display the options below in the SAS LOG file with descriptions:

 NOCAPS Do not translate source input to uppercase
 NOCARDIMAGE Do not process SAS source and data lines as 80-byte records
 INVALIDDATA=. Missing value to assign when invalid numeric data encountered on

input
 S=0 Length of source statements and data lines
 S2=0 Length of secondary source statements, such as input from a

%INCLUDE statement, an AUTOEXEC file, or an autocall macro file
 SEQ=8 Number of digits in numeric portion of the sequence field
 NOSPOOL Do not write SAS statements to a utility data set in the WORK data

library
 YEARCUTOFF=1920 Cutoff year for DATE and DATETIME informats and functions
 NUMKEYS=12 Number of function keys. (default on machine keyboard)
 NUMMOUSEKEYS=3 Number of keys (buttons) on mouse
 PFKEY=(WIN) Key definitions to map
 NOWEBUI Do not use web user interface enhancements for supporting hover

mode and single-click expand/activation.

Acceptable group-names under SAS V8.2 are:

COMMUNICATIONS ENVDISPLAY
ENVFILES ERRORHANDLING
EXECMODES EXTFILES
GRAPHICS INPUTCONTROL
INSTALL LANGUAGECONTROL
LISTCONTROL LOGCONTROL
LOG_LISTCONTROL MACRO
MEMORY ODSPRINT
PERFORMANCE SASFILES
SORT

3

 SUGI 29 Coders' Corner

DISPLAY THE ENGINES

If you want to view the engines available, there is an undocumented procedure.

Example 6:

proc nickname; run;

The above program will display a list of engines in the SAS LOG file with descriptions:

 Nickname Module Type Fileformat Description

 M ACCESS99 SASECRSP ENG Read engine for CRSP ACCESS97 database
 M BASE SASE7 ENG 7 Base SAS I/O engine
P M BMDP SASBMDPE ENG 607 BMDP Save File engine
P M CRSPACC SASECRSP ENG Read engine for CRSP ACCESS97 database
P M DB2 SASIODBU ENG 7 SAS/ACCESS Interface to DB2
P DBIPRO SASIOPRO ENG 7 DBI Prototype engine
P M FAMECHLI SASEFAME ENG Seamless libname interface to FAME db
P M ODBC SASIOODB ENG 7 SAS/ACCESS Interface to ODBC
P M OLEDB SASIOOLE ENG 7 SAS/ACCESS Interface to OLE DB
P M ORACLE SASIOORA ENG 7 SAS/ACCESS Interface to Oracle
……

REGISTER THE LOCATION OF THE SAS SYSTEM

If your SAS system is not registered properly during an installation, or if you have installed SAS 8 and SAS 9 on the same machine,
you could use an undocumented system option –REGSERVER to register the default location of the sas.exe program. This
configuration option can be used in a command prompt:

Example 7:

!SASROOT\sas.exe –regserver

where !SASROOT is the location of the SAS directory (i.e. C:\Program Files\SAS Institute\SAS\V8).

PREVENTING THE APPEARANCE OF THE POP-UP WINDOWS

An undocumented option -nosleepwindow exists that prevents the appearance of the pop-up windows that normally appear when
you use the SLEEP and WAKEUP functions. This invocation option can be used in the startup command of your SAS session
shortcut, with your RUN command, or in your sasv8.cfg file.

This option will be documented in the next release of SAS.

JOIN METHOD CHOSEN BY PROC SQL

If you want to improve the join performance of programs that use PROC SQL to join tables, you need to know how the PROC SQL
query optimiser chooses the join methods. There is an undocumented option _METHOD on the PROC SQL statement that will
display the hierarchy of processing methods that will be chosen by PROC SQL. You need to set the SAS System option MSGLEVEL
= I to see the internal form of the query plan in the SAS LOG. An undocumented option _TREE will show the hierarchy tree as
planned in the SAS LOG.

The PROC SQL execution methods include:

sqxcrta Create table as Select
sqxslct Select
sqxjsl Step Loop Join (Cartesian)
sqxjm Merge Join
sqxjndx Index Join
sqxjhsh Hash Join
sqxsort Sort
sqxsrc Source Rows from table
sqxfil Filter Rows
sqxsumg Summary Statistics (with GROUP BY)
sqxsumn Summary Statistics (not grouped)
sqxuniq Distinct rows only

4

 SUGI 29 Coders' Corner

Example 8:

options msglevel = I;

proc sql _method
 _tree;
 select t1.id
 ,x
 ,y
 ,z
 from testdata1 as t1
 ,testdata2 as t2
 ,junk._totest as t3
 where t1.id = t2.id and
 t2.id = t3.id;
quit;

The above program will display the query plan below in the SAS LOG file:

sqxslct
 sqxjhsh
 sqxjhsh
 sqxsrc(ORK.TESTDATA2(alias = T2))
 sqxsrc(JUNK._TOTEST(alias = T3))
 sqxsrc(WORK.TESTDATA1(alias = T1))

Tree as planned.
 /-SYM-V-(t1.id:1 flag=0001)
 /-OBJ----|
 | |--SYM-V-(t1.x:2 flag=0001)
 | |--SYM-V-(t2.y:2 flag=0001)
 | \-SYM-V-(t3.z:2 flag=0001)
 /-JOIN---|
 | | /-SYM-V-(t2.id:1 flag=0001)
 | | /-OBJ----|
 | | | |--SYM-V-(t2.y:2 flag=0001)
 | | | |--SYM-V-(t3.id:1 flag=0001)
 | | | \-SYM-V-(t3.z:2 flag=0001)
 | | /-JOIN---|
 | | | | /-SYM-V-(t2.id:1
flag=0001)
 | | | | /-OBJ----|
 | | | | | \-SYM-V-(t2.y:2
flag=0001)
 | | | | /-SRC----|
 | | | | | \-TABL[WORK].testdata2 opt=''
 | | | |--FROM---|
 | | | | | /-SYM-V-(t3.id:1
flag=0001)
 | | | | | /-OBJ----|
 | | | | | | \-SYM-V-(t3.z:2
flag=0001)
 | | | | \-SRC----|
 | | | | \-TABL[JUNK]._totest opt=''
 | | | |--empty-
 | | | | /-SYM-V-(t2.id:1)
 | | | \-CEQ----|
 | | | \-SYM-V-(t3.id:1)
 | |--FROM---|
 | | | /-SYM-V-(t1.id:1 flag=0001)
 | | | /-OBJ----|
 | | | | \-SYM-V-(t1.x:2 flag=0001)
 | | \-SRC----|
 | | \-TABL[WORK].testdata1 opt=''
 | |--empty-
 | | /-SYM-V-(t2.id:1)
 | \-CEQ----|
 | \-SYM-V-(t1.id:1)
 --SSEL---|

5

 SUGI 29 Coders' Corner

The SELECT module (sqxslct) gets its input records from the Hash Join Module (sqxjhsh), which gets its input from three sources
(sqxsrc).

DATA SETS DISAPPEAR

When you create data sets that start with _to, like _total, _top, they will not be visible to the SAS EXPLORE window, but, they are in
the directory. You can treat them the same as other data sets, even though you can’t see them in the SAS EXPLORE window. This
is because when the SAS system operates, _to is used as the prefix to the temporary data sets and the temporary data sets are
intended to be hidden from the SAS users. So don’t be surprised when you can’t see the data sets that you just generated in your
program.

Example 9:

libname junk "C:\junk";

data junk._totest;
 do id = 1 to 100;
 z = ceil (ranuni(0) * 100);
 output;
 end;
run;

CHANGE THE SYMBOL ON THE KAPLAN-MEIER PLOT

PROC LIFETEST can generate a high-resolution Kaplan-Meier Curve. The CENSOREDSYMBOL option specifies the symbol value
for the censored observations.

When you specify the strata levels in the STRATA statement, you always have the same symbol on the curves for censored
observations for all the strata levels. But sometimes we prefer having different symbols for different strata levels. This can be done
by an undocumented option for the CENSOREDSYMBOL option. When you put CENSORSYMBOL = ' ' in the PROC LIFETEST
statement, you can change the symbols used for censored observations in the plots by SAS/GRAPH SYMBOL statement.

Example 10:

data survsamp;
 retain seed 20020824 n 1 p 0.2;
 do treat = 1 to 2;
 do patid = 1 to 100;
 call ranbin(seed,n,p,censor);
 call ranexp(seed,xi);
 if treat = 1 then
 survtime = xi / (log(2) / 15);
 else
 survtime = xi / (log(2) / 10);
 output;
 end;
 end;
 drop seed n p xi;
 format patid z3.;
run;

symbol1 line = 1
 color = blue
 width = 1
 v = circle;

symbol2 line = 4
 color = red
 width = 1
 v = triangle;

proc lifetest data = survsamp noprint
 plot = (s) censorsymbol = ' ';
 time survtime * censor(1);
 strata treat;
run;

6

 SUGI 29 Coders' Corner

The above program will generate the Kaplan-Meier curve:

Kaplan Meier Curve Example

Median Survival of 1 is 19.6 Months (N=100)
Median Survival of 2 is 11.5 Months (N=100)

SOURCE: EXAMPLE PROGRAM.SAS WCHENG SASv8.2 (05JAN2004 19:29)
P value from Log-Rank Test: 0.0023

S
u
r
v
i
v
a
l

D
i
s
t
r
i
b
u
t
i
o
n

F
u
n
c
t
i
o
n

0.00

0.25

0.50

0.75

1.00

survtime

0 20 40 60 80 100

STRATA: treat=1 Censored treat=1
treat=2 Censored treat=2

CONCLUSION

Since these features are undocumented, we should use them with caution. It’s better to test the program thoroughly or consult with
the SAS Institute technical support before we apply them to our programming. They may remain undocumented because they are
not tested thoroughly, or they perform badly in some combination with other options, or on some host systems, etc. The programs in
this paper are tested on SAS version 8.2 for Windows. Most of the undocumented features covered in this paper can be adapted to
other operating systems.

REFERENCES

SAS Institute, Inc., SAS OnlineDoc, Version 8, Cary, NC: SAS Institute, Inc., 1999.

SAS Institute, Inc., SAS System Help, Version 8, Cary, NC: SAS Institute, Inc., 1999-2001.

SAS Institute, Inc., SAS Notes SN-000258, Cary, NC: SAS Institute, Inc., 2001

SAS Institute, Inc., SAS Notes SN-001474, Cary, NC: SAS Institute, Inc., 2001.

SAS Institute, Inc., SAS Notes SN-001714, Cary, NC: SAS Institute, Inc., 2001.

SAS Institute, Inc., SAS Notes SN-007264, Cary, NC: SAS Institute, Inc., 2002.

SAS Institute, Inc., SAS Notes SN-008234, Cary, NC: SAS Institute, Inc., 2003.

SAS Institute, Inc., SAS Notes SN-008900, Cary, NC: SAS Institute, Inc., 2002.

SAS Institute, Inc., SAS Notes SN-010363, Cary, NC: SAS Institute, Inc., 2003.

SAS Institute, Inc., SAS Notes SN-011065, Cary, NC: SAS Institute, Inc., 2003.

Kent, P. (1995), “SQL Joins - The Long and The Short of It” Proceedings of the Twentieth Annual SAS Users Group
International Conference, 20, 206-215.

7

 SUGI 29 Coders' Corner

8

Holland, P. “Formats, Options, and Functions” Views Issue 21, 1st Quarter 2003.

ACKNOWLEDGMENTS

I would like to thank Paul Kent and Julia Schelly of SAS Institute for their review and comments. I would also like to acknowledge the
contributors on SAS-L.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Wei Cheng
Isis Pharmaceuticals, Inc.
2292 Faraday Ave.
Carlsbad, CA 92008
Work Phone: (760) 603-3807
Fax: (760) 603-2588
Email: wcheng@isisph.com
Web: http://www.prochelp.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

 SUGI 29 Coders' Corner

	SUGI 29 Proceedings Table of Contents

