
Paper 042-29

Top Ten Reasons to Use PROC SQL

Weiming Hu, Center for Health Research Kaiser Permanente,
 Portland, Oregon, USA

ABSTRACT

Among SAS® users, it seems there are two groups of people, those who love PROC SQL and those who hate
PROC SQL. Personally I fell in love with SAS SQL right after I was introduced to it in 1994. I see SAS PROC
SQL as being complementary to existing SAS procedures and the DATA Step. I find a lot of tasks can be done
more easily in PROC SQL, and sometimes they are not even possible in other SAS procedures. This paper is
intended to share my experience with other SAS users, especially non-SQL users who want to learn SQL. The
purpose is to explore alternative methodologies, as we know that in SAS there are hundreds of ways to get the
same thing done.

INTRODUCTION

Structured Query Language (SQL) is a language primarily used for retrieving data from relational databases.
Ever since SAS implemented SQL (PROC SQL) in Version 6.0, it opened a whole new arena for SAS users. I
see the distinct advantage of PROC SQL as making SAS programming easier and SAS code more intuitive. A
simple SQL statement sometimes is equivalent to several SAS procedures and DATA Steps. In this paper, I will
go over some usages of PROC SQL, which either simplify SAS programming or produce output that is not
available in the non-SQL part of SAS. This paper will not assess efficiency or other system issues (readers can
look in the previous SUGI papers to see the comparisons). More often than not, PROC SQL will come out as a
winner.[1] Because computers now run much faster, and memory is much cheaper, I would rather focus on
writing the SAS code and getting the job done and not worry about CPU time. Since I work in a health service
research environment, many of the examples given below will be health care related.

Top 10 reasons to use SAS PROC SQL

10. Join tables

This is probably the most common usage of PROC SQL. The following SQL examples join two or more tables.
All rows from the left are returned with information added from the right tables on the match column(s). The
advantages are:

• No sorting needed.
• Two tables can join on different variable names.

In example A, HRN (Health Record Number) and CHART are patients’ unique ID variables. The SQL statement
is the equivalent of two PROC SORT procedures and one DATA Step merge. Example B demonstrates that
you can join different tables based on different variables. (Caution: HRN or CHART or CASEID needs to be
unique in each of the tables, otherwise you may end up with more rows than you anticipated.)

A) Two tables

 PROC SQL; CREATE TABLE MERGED AS
 SELECT *
 FROM SAMPLE AS A LEFT JOIN VISITS AS B
 ON A.HRN=B.CHART
 ;QUIT;

 1

 SUGI 29 Coders' Corner

B) Several tables

 PROC SQL; CREATE TABLE SRD_CAT AS
 SELECT *
 FROM SAMPLE AS A LEFT JOIN DEMO AS B ON A.HRN=B.CHART
 LEFT JOIN LUNG_CX AS C ON A.HRN=C.HRN
 LEFT JOIN CVD AS D ON A.HRN=D.HRN
 LEFT JOIN COPD AS E ON A.HRN=E.HRN
 LEFT JOIN ELIG AS F ON A.CASEID=F.CASEID
 ;QUIT;

9. Build macro value list

The following SQL example assigns a whole column of values to a macro variable. This can be useful in two
situations:

• Outputting information to title/footnote statements using macro variables when you don’t know the new
values (department code) in advance.

• Using the macro variable as the value for your IN statement (see below).

The limit for the length of the macro variable is quite long. Under Windows SAS version 8, for 8 digit HRN, the
macro variable can hold 7200+ HRNs.

PROC SQL NOPRINT;
 SELECT QUOTE(TRIM(DEPT)) INTO :DEPT_LIST SEPARATED BY ', '
 FROM A
;QUIT;

 %PUT DEPT_LIST: &DEPT_LIST;
 DEPT_LIST: "EAP", "HEHA", "XYZ"

8. Access other databases

Below is SQL code to query an Oracle table from PC SAS. (OO.CMS_MEMBER is our membership file with
400,000+ rows). PROC SQL is the only way you can join a SAS table and an Oracle table. Method 1 uses join
while Method 2 uses subquery. As we can see from the chart on the next page Method 2 is super fast for a
small sample.

*--METHO
PROC SQL;

D 1--;

 CREATE TABLE TTT AS
 SELECT B.HRN, FAMACT, RELTN
 FROM XSAMPLE AS A INNER JOIN OO.CMS_MEMBER (dbkey=hrn dbindex=yes) AS B
 ON A.HRN =B.HRN
;QUIT;

*--METHOD 2--;
PROC SQL NOPRINT; SELECT HRN INTO :HRN_LIST SEPARATED BY ',' FROM xsample; QUIT;
PROC SQL;
 CREATE TABLE TTT AS
 SELECT HRN, FAMACT, RELTN
 FROM OO.CMS_MEMBER (dbkey=hrn dbindex=yes)
 WHERE HRN IN (&HRN_LIST)
;QUIT;

Note: The maximum for &HRN_LIST under Windows SAS version 8, for 8 digits HRN, is about 1000 HRNs; in
other words, the SQL limit comes before SAS Macro.

 2

 SUGI 29 Coders' Corner

Comparison of JOIN and SUBQUERY

 Sample size CPU clock

 100 method1 0.36 16.70
 method2 0.05 1.04
 500 method1 1.17 1:07.60
 method2 0.14 1:36.00
 1000 method1 2.87 2:22.37
 method2 0.29 3:56.61

7. Textwrapping

When you have a long character variable (such as a COMMENT field in the questionnaire), and you want to
print the values using PROC PRINT, you will get the warning message:

WARNING: Data too long for column "COMMENT"; truncated to 124 characters to fit.

A simple solution is to use PROC SQL with the flow option. An alternative would be to use PROC REPORT.
(Note: Flow=30 has an effect on all character variables.)

PROC SQL FLOW=30;
 SELECT HRN, COMMENT
 FROM A
;QUIT;

 HRN COMMENT

12345678 LONGTEXTTTTTTTTTTTTTTTTTTTTT
 TTTTTTTTTTTTTTTTTTTTTTTTTTTT
 TTTTTTTTTTTTTTTTTTTTTTTTTTTT
 TTTTTTTTTTTTTTTTTTTTTTTTTTTT
87654321 LONGTEXTTTTTTTTTTTTTTTTTTTTT
 TTTTTTTTTTTTTTTTTTTTTTTTTTTT
 TTTTTTTTTTTTTTTTTTTTTTTTTTTT
 TTTTTTTTTTTTTTTTTTTTTTTTTTTT

6.

 Count frequencies

Using PROC SQL, you can quickly count non-missing values for several variables and output the result on one
line. (PROC FREQ would produce several output tables with the output sometimes continuing on to the next
page.)

 PROC SQL; SELECT COUNT(*) AS TOTAL,
 COUNT(DIAG0001) AS DX1,
 COUNT(DIAG0002) AS DX2,
 COUNT(DIAG0003) AS DX3,
 COUNT(DIAG0004) AS DX4
 FROM INP; QUIT;

 TOTAL DX1 DX2 DX3 DX4
 --

 1562 1562 1421 1163 814

 3

 SUGI 29 Coders' Corner

5. Matching multiple tables at different levels

Below I join 3 tables. The task is to get the inpatient diagnoses residing in OO.ADT_DIAG (MAIN_KEY as match
variable) for my SAMPLE table (HRN as match variable). The middle table (OO.ADT_REG) serves as a link for
the other 2 tables because it contains both matching variables (HRN and MAIN_KEY).

PROC SQL;
 CREATE TABLE ADT AS
 SELECT A.HRN, DIAG
 FROM SAMPLE AS A , OO.ADT_REG (dbkey=HRN dbnullkeys=no) AS B,
 OO.ADT_DIAG (dbkey=MAIN_KEY dbnullkeys=no) AS C
 WHERE A.HRN = B.HRN and B.MAIN_KEY=C.MAIN_KEY
;QUIT;

4. Insert records to a table

Below is code to calculate the mid-year membership count from an eligibility file for each year from 1986 to
2002. (This is just for demonstration purposes - the code is not very efficient). I have a macro %DO-%END loop
where each iteration will produce two macro variables and PROC SQL will insert a new record into the table.
Compared to BASE SAS processing, using SQL saves a step. (In BASE SAS you would have to create a one-
record table, then append it to the master table.)

%MACRO MULTI_YR (BY=, EY=);

 *---creating empty table---;
 DATA MYEARPOP; MYEAR=.; POP=.; DELETE; RUN;

 %DO I= &BY %TO &EY;

 PROC SQL NOPRINT;
 SELECT COUNT(*) INTO :RECORDS
 FROM CCPSSD.KPOPGAP2
 WHERE FDATE LE "01jul&I"D LE TDATE;
 ;QUIT; %put &records;

 PROC SQL; INSERT INTO MYEARPOP
 SET MYEAR=&I,POP=&RECORDS
 ;QUIT;

 %END;

%MEND MULTI_YR;

%MULTI_YR(BY=1986,EY=2002);

3. COALESCE function

In our administrative tables, the Social Security Number (SSN) field is not very well populated. We need to go
after different sources: membership tables (old, current, and daily) and other utilization tables. PROC SQL
makes the selection process very easy, where the COALESCE function will pick the first non-missing value.

PROC SQL; CREATE TABLE _SSNINFO AS
 SELECT S.*, COALESCE (C.SSN, A.SSN, B.SSN, D.SSN) AS SSN,
 FROM _SAMPLE AS S LEFT JOIN _CMS AS A ON S.HRN=A.HRN
 LEFT JOIN _MG AS B ON S.HRN=B.HRN
 LEFT JOIN _CMSDL AS C ON S.HRN=C.HRN
 LEFT JOIN _DOCPLUS AS D ON S.HRN=D.HRN
;QUIT;

 4

 SUGI 29 Coders' Corner

2. Summarize data

You can use SQL functions to summarize data. PROC SQL is more intuitive than PROC MEANS or PROC
SUMMARY, where SAS will create an output table that always contains more rows and columns than you need
and you have to choose the right _TYPE_ value. PROC SQL below summarizes the total number of cases by
age group for each year.

PROC SQL;
 SELECT CHMPYEAR, AGEGRP, SUM(CASES) AS CASES
 FROM V6DIR.SVI4_AGE
 GROUP BY 1,2
;QUIT;

1. Fuzzy merge

Fuzzy merge is the process of matching records where the condition of a match is based on close-but-not
equivalent condition. In survival analysis where we need to know whether a member is dead, one important step
is to match our sample to the records in the death tape by SSN, birthday, and name. We compare matching
variables and assign points for every match. The score of 16 would be a perfect match. In real life, this is not
always the case, so our rule is that a score of 13 and above will be considered a match. For any score between
9 and 12 we will do a manual check to determine whether it is a match.

PROC SQL;
 CREATE TABLE REVIEW AS
 SELECT *
 FROM SAMPLE, OW_DEATH
 WHERE SUM(((KBMON =SBMON)*2), ((KBDAY =SBDAY)*1),
 ((KBYEAR =SBYEAR)*2),
 ((KFSNDX =SFSNDX)*1), ((KFNAME =SFNAME)*1),
 ((KMNAME =SMNAME)*1),
 ((KLSNDX =SLSNDX)*1), ((KLNAME =SLNAME)*1),
 ((KSEX =SSEX)*2) , ((KSSN =SSSN and KSSN ne ' ')*4))
 >=9;
QUIT;

CONCLUSION

PROC SQL is a powerful tool. It can make your life much easier. For novice SQL users, I would like to offer my
caveats:

1. Be careful about many to many table joins in SQL. When joining tables that have multiple records per
matching ids, the output table may be a Cartesian product. For example, 3 rows joining 5 rows of same id
variable will produce 15 rows, as compared to the DATA Step MERGE where only 5 rows will be created.

2. PROC SQL is code-saving, but not always time-saving.

REFERENCES

The reader is directed to the following papers for additional and important information on SAS PROC SQL.

1. Steven Feder. “Comparative Efficiency of SQL and Base Code When Reading from Database Tables and
Existing Data Sets.” Proceedings of SAS User Group International Conference, Paper 76-28, Seattle,
Washington, USA. 2003.

2. Ian Whitelock. “PROC SQL – Is It a required Tool for Good SAS programming?” Proceedings of SAS User
Group International Conference, Paper 60-26, Long Beach, CA, USA 2001.

 5

 SUGI 29 Coders' Corner

3. Kevin J. Smith, et al. “PROC SQL vs. Merge. The Miller Lite Questions of 2002 and Beyond.” Proceedings of
SAS User Group International Conference, Paper 96-28, Seattle, Washington, USA. 2003.

TRADEMARKS

SAS® and all other SAS® Institute Inc. product or service names are registered trademarks or trademarks of
SAS® institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and
product names are registered trademarks or trademarks of their respective companies.

ACKNOWLEDGEMENTS

The author would like to express his appreciation to Pamela and Steve Balch for their assistance in this paper.

CONTACT INFORMATION

You can send your comments, questions, and inquiries to:

Weiming Hu, Senior Research Analyst
Center for Health Research
Kaiser Permanente Northwest Region
3800 N Interstate Ave.
Portland, OR 97227-1110
Tel.: 503.335.6770
Fax: 503.335.2424
Email: Weiming.r.hu@kpchr.org

 6

 SUGI 29 Coders' Corner

	SUGI 29 Proceedings Table of Contents
	Top Ten Reasons to Use PROC SQL
	Weiming Hu, Center for Health Research Kaiser Permanente,
	Portland, Oregon, USA
	ABSTRACT
	INTRODUCTION
	Top 10 reasons to use SAS PROC SQL
	B) Several tables
	Comparison of JOIN and SUBQUERY

	CONCLUSION
	REFERENCES
	
	
	TRADEMARKS

	ACKNOWLEDGEMENTS
	CONTACT INFORMATION

