
Paper 045-29

A Format to Make the _TYPE_ Field of PROC MEANS Easier to Interpret
Matt Pettis, Thomson West, Eagan, MN

ABSTRACT: PROC MEANS analyzes datasets according to the variables listed in its Class statement. Its computed

TYPE variable can be used to determine which class variables were used for the analysis variable calculation. It
can be very difficult to determine by inspection of the _TYPE_ variable which class variables were used in a
calculation of any given row. The %TypeFormat macro takes the CLASS variable list and creates a format that
associates the values of the _TYPE_ variable with a string listing the variables used in the calculation separated by
the '*' character.

INDTRODUCTION:

The purpose of this paper is to present a macro that creates a format which formats the _TYPE_ variable in a PROC
MEANS output of SAS® from a number into a descriptive string.

PROBLEMS READING THE _TYPE_ VARIABLE

Consider the following scenario: Every day, a PROC MEANS with five class variables is run on a dataset, and the result is
appended to a base of daily PROC MEANS outputs. An analyst is asked to run a report on the base for a certain three class
variable combination. How does the analyst retrieve the correct data for the report?

PROC MEANS provides a solution to this problem via the _TYPE_ variable. A group of rows with identical _TYPE_

values indicates that the same variables were used in calculating the analysis variables, and each row with this _TYPE_ value
represents a different combination of the level of the variables. Rows with different _TYPE_ variables indicate that different
combinations of variables were used.

While this is a mathematically efficient way to categorize the analysis, it is a difficult value to use in practice. In order to

interpret the value of the _TYPE_ variable, the analyst must be familiar with binary mathematics. Directions on how to
interpret the meaning of the _TYPE_ variable may be found in the SAS9 Language Reference. The analyst must be able to
convert the _TYPE_ value into binary, then use that result to pick out the relevant analysis variables from the class statement.
A solution to this problem is to use the %TypeFormat macro (code included), which associates the _TYPE_ variable value to a
string that lists the classification variables used in a particular calculation.

For example, consider the following output of a simple fictitious dataset that has the location, home directory, and HTTP

response code of each request to a server:

Figure 1: PROC MEANS and output – No _TYPE_ formatting

Code:
PROC MEANS data=work missing noprint;
 class Location Directory ResponseCode;
 output out=temp;
 run;
PROC PRINT data=temp;

Title '_TYPE_ WITHOUT formatting'; run;

 1

 SUGI 29 Coders' Corner

Output:
 TYPE WITHOUT formatting

 Response
 Obs _TYPE_ Location Directory Code _FREQ_

 1 0 30
 2 1 1
 3 1 200 11
 4 1 404 18
 5 2 /Downloads 12
 6 2 /Graphics 18
 7 3 /Downloads 1
 8 3 /Downloads 200 6
 9 3 /Downloads 404 5
 10 3 /Graphics 200 5
 11 3 /Graphics 404 13
 12 4 SiteA 13
 13 4 SiteB 17
 14 5 SiteA 1
 15 5 SiteA 200 4
 16 5 SiteA 404 8
 17 5 SiteB 200 7
 18 5 SiteB 404 10
 19 6 SiteA /Downloads 5
 20 6 SiteA /Graphics 8
 21 6 SiteB /Downloads 7
 22 6 SiteB /Graphics 10
 23 7 SiteA /Downloads 1
 24 7 SiteA /Downloads 200 2
 25 7 SiteA /Downloads 404 2
 26 7 SiteA /Graphics 200 2
 27 7 SiteA /Graphics 404 6
 28 7 SiteB /Downloads 200 4
 29 7 SiteB /Downloads 404 3
 30 7 SiteB /Graphics 200 3
 31 7 SiteB /Graphics 404 7

 2

 SUGI 29 Coders' Corner

In this output, the _TYPE_=0 value identifies the summary with no classification variables, the _TYPE_=1 values identifies
the summary by the ResponseCode variable, _TYPE_=2 identifies the summary by the Directory variable, _TYPE_=3
identifies the summary by Directory and ResponseCode variables, and so on through _TYPE_=7. Notice how difficult it can
be to determine which CLASS variables were used for analysis in each row, especially if there are missing values, as is the
case with one of the Response codes.

The %TypeFormat macro creates a format that associates values of the _TYPE_ variable with a string of the variable

names used in the analysis separated by a '*' character (see Appendix A for the macro code). In order to do this, the
%TypeFormat must be called with two arguments: one being the name of the format that will be created (formatname=), and
the other being the list of variables in the Class statement of the PROC MEANS in exactly the same order as it appears in the
PROC MEANS statement (var=):

Figure 2: PROC MEANS and output – _TYPE_ formatting.
Code:

%TypeFormat(formatname=testtyp,var=Location Directory ResponseCode);
PROC PRINT data=temp;

var _type_ Location Directory ResponseCode _freq_;
format _type_ testtyp.;
title '_TYPE_ WITH formatting'; run;

Output:

 TYPE WITH formatting
 Response
 Obs _TYPE_ Location Directory Code _FREQ_

 1 30
 2 ResponseCode 1
 3 ResponseCode 200 11
 4 ResponseCode 404 18
 5 Directory /Downloads 12
 6 Directory /Graphics 18
 7 Directory*ResponseCode /Downloads 1
 8 Directory*ResponseCode /Downloads 200 6
 9 Directory*ResponseCode /Downloads 404 5
 10 Directory*ResponseCode /Graphics 200 5
 11 Directory*ResponseCode /Graphics 404 13
 12 Location SiteA 13
 13 Location SiteB 17
 14 Location*ResponseCode SiteA 1
 15 Location*ResponseCode SiteA 200 4
 16 Location*ResponseCode SiteA 404 8
 17 Location*ResponseCode SiteB 200 7
 18 Location*ResponseCode SiteB 404 10
 19 Location*Directory SiteA /Downloads 5
 20 Location*Directory SiteA /Graphics 8
 21 Location*Directory SiteB /Downloads 7
 22 Location*Directory SiteB /Graphics 10
 23 Location*Directory*ResponseCode SiteA /Downloads 1
 24 Location*Directory*ResponseCode SiteA /Downloads 200 2
 25 Location*Directory*ResponseCode SiteA /Downloads 404 2
 26 Location*Directory*ResponseCode SiteA /Graphics 200 2
 27 Location*Directory*ResponseCode SiteA /Graphics 404 6
 28 Location*Directory*ResponseCode SiteB /Downloads 200 4
 29 Location*Directory*ResponseCode SiteB /Downloads 404 3
 30 Location*Directory*ResponseCode SiteB /Graphics 200 3
 31 Location*Directory*ResponseCode SiteB /Graphics 404 7

 3

 SUGI 29 Coders' Corner

CONCLUSION
Notice how much easier the Figure 2 format is to read than Figure 1. The variables that are involved in the calculation are

now clearly identified and the levels of these variables can now be read easily from the appropriate columns. This also makes
identifying missing data easier, as the CLASS variable used is listed even if its data value is missing.

REFERENCES

SAS Institue Inc. (2002), SAS9 Language Reference: Dictionary, Volumes 1 and 2. Cary, NC: SAS Institute Inc.

SAS Institue Inc. (2002), SAS9 Macro Language: Reference. Cary, NC: SAS Institute Inc.

CONTACT INFORMATION
Matt Pettis
Thomson West Group
610 Opperman Dr.
Eagan, MN 55417
+1 (651) 848-3976
Matt.pettis@thomson.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks of trademarks of SAS Institute Inc. in
the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

 4

 SUGI 29 Coders' Corner

mailto:Matt.pettis@thomson.com

Appendix A: %TypeFormat SAS code:

%macro TypeFormat(formatname=typefmt,var=x1 x2 x3 x4);
 /* Count the number of variables, put into var_count */
 %local var_count; %let var_count = 1;
 %do %until (%scan(&var,&var_count) eq); %let var_count = %eval(&var_count+1); %end;
 %let var_count = %eval(&var_count-1);

 /* Assign each variable name to an indexed macro &&var_val&i */
 %local i; %let i = %eval(&var_count);
 %do %until (&i <= 0);
 %local var_val&i;
 %let var_val&i = %scan(&var,&i); %let i = %eval(&i-1);
 %end;

 /* Create temp dataset to use as format */
 data _tmp;
 keep label start fmtname type;
 retain fmtname "&formatname" type 'n';
 length label $ 256 sep $ 1;
 sep = '*'; * Separator character;

 /* Loop through the type combinations */
 type_iter = 2**(&var_count) - 1; * Loop through the types;
 var_iter = &var_count; * Loop over the binary digits;
 do start = 0 to type_iter; * Type iteration loop;
 i_tmp = start; label = '';
 do j = var_iter to 1 by (-1); * Binary digit loop;
 bin_digit = int(i_tmp/(2**(j-1)));
 if bin_digit = 1 then do;
 * Get appropriate variable name;
 x = symget('var_val'||left(trim(put(&var_count - j + 1,3.))));
 * Add the separator to the string;
 x = left(trim(x))||sep;
 * Append selected variable name to label string;
 newlabel = trim(label)||x;
 * Reassign label as newlabel;
 label = newlabel;
 * Decrement i_tmp if bin_digit is in types binary representation;
 i_tmp = i_tmp - 2**(j-1);
 end;
 end;
 label = left(label); * justify label test to left;
 len = length(label);
 * Take off separator that was appended to end;
 label = substr(label,1,len-1);
 output;
 end;
 stop;
 run;

* create the format from _tmp dataset;
proc format cntlin=_tmp; run;
* Delete _tmp dataset to clean up work library;
proc datasets; delete _tmp; quit; run;
%mend TypeFormat;

 5

 SUGI 29 Coders' Corner

	SUGI 29 Proceedings Table of Contents
	REFERENCES
	CONTACT INFORMATION
	Matt Pettis
	Thomson West Group
	610 Opperman Dr.
	Eagan, MN 55417
	Matt.pettis@thomson.com
	SAS and all other SAS Institute Inc. product or service names are registered trademarks of trademarks of SAS Institute Inc. in the USA and other countries. (indicates USA registr
	Other brand and product names are trademarks of their respec

