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ABSTRACT

 

Ever-improving methods and software, including new tools in the SAS

 

®

 

 9.1, are transforming the practice of 
sample-size analysis. Statisticians and subject-matter investigators need to understand the concepts and issues 
involved, but such matters are too often given short shrift in statistics education. We hope this paper helps close 
that gap.

This presentation covers the most common type of sample-size analysis, classical prospective power analysis, 
which examines the chance that a given null statistical hypothesis will be rejected (

 

p

 

 

 

≤

 

 

 

�

 

). Essential to this—but 
rarely taught—is that greater power reduces both positive and negative inference mistake rates (defined herein), 
which we argue are more relevant to researchers than the classical Type I and II error rates (

 

�

 

 and 

 

�

 

 = 1 – power).

In carrying out a strong prospective sample-size analysis, the research team is forced to delineate and critique the 
rationale undergirding the study and all the components of the research protocol. They must specify tight research 
questions, the research design, the various measures, and the analysis plan. They must come to agree on and 
justify (as best they can) some reasonable conjectures for what the “infinite dataset” may be for their study.

Modern software facilitates all this work. These and other concepts and issues are addressed through a case study 
that uses PROC POWER (SAS/STAT

 

®

 

 9.1).

This tutorial is for statisticians and para-statisticians inexperienced with sample-size analysis, but even those who 
are quite experienced may discover new ideas and/or new ways of communicating these matters to students and 
investigators.

Note: Later versions of this paper and all related SAS code are available at www.bio.ri.ccf.org/robrien/
OBriCast2004. We intend to add a case study involving an analysis of covariance that uses PROC GLMPOWER and 
others that use PROC POWER to handle sample-size analyses for confidence intervals and tests of equivalence. 
The final version will also describe a general method for retrospective power analysis (implemented via a custom 
SAS macro), which uses existing data to compute lower confidence limits for power.

 

INTRODUCTION

 

In their “Perspectives on Large-Scale Cardiovascular Clinical Trials for 
the New Millennium,” Drs. Eric Topol, Robert Califf, and others (1997) 
provide a fine preamble to our discussions: 

 

The calculation and justification of sample size is at the crux of the 
design of a trial. Ideally, clinical trials should have adequate power, 

 

≈

 

90%, to detect a clinically relevant difference between the 
experimental and control therapies. Unfortunately, the power of 
clinical trials is frequently influenced by budgetary concerns as well as pure biostatistical principles. Yet an 
underpowered trial is, by definition, unlikely to demonstrate a difference between the interventions assessed 
and may ultimately be considered of little or no clinical value. From an ethical standpoint, an underpowered 
trial may put patients needlessly at risk of a new therapy without being able to come to a clear conclusion.

 

Let us augment this passage with another key issue in sample-size analysis. All studies are planned based on 
knowledge gained from previous ones. Richard Feynman, the 1965 Nobel Laureate in Physics and the self-described 
“curious character,” wrote (Feynman 1999), 

 

Scientific knowledge is a body of statements of varying degrees of uncertainty,
some mostly unsure,
some nearly sure,
none absolutely certain.

‘Sample Size at Crux of Design’
• power ≈90% to detect relevant effects
• budgetary (and recruiting) constraints
• underpowered study

  …little or no value
  …ethical concerns
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This reflects what we call The March of Science, which 
for medical research is sketched in Figure 1. As we step 
forward, our sample-size considerations need to reflect what 
we know. At any point, but especially at the beginning, the 
curious character inside of us should be free to conduct 
observational, exploratory, or pilot studies, because as 
Feynman said, “something wonderful can come from them.” 
Such studies are still ‘scientific,’ but they are for generating new hypotheses, not testing them. Accordingly, little or no 
sample-size analysis is usually called for. But to become “nearly sure” about our answers, we typically conduct 
convincing confirmatory studies under specific protocols. This often requires innovative and sophisticated statistical 
planning, which is usually heavily scrutinized by all concerned, especially by the reviewers. No protocol is ever perfect, 
but as the New York Yankee catcher and populist sage once said, “Don’t make the wrong mistake.” 

This paper
• Reviews the core issues and concepts in sample-size analysis for classical (frequentist) hypothesis testing.
• Defines negative and positive false inference rates, quantities often more relevant to consider than the 

classical Type I and Type II error rates. Investigators need to understand that greater statistical power 
reduces 

 

both

 

 types of false inference rates.
• Develops these principles through a fictionalized case study that is tied directly to important medical 

research. All computations use the SAS System Version 9.1, especially PROC POWER (SAS Institute, 
2004a,b). 

• Later versions of this paper and all related SAS code are at www.bio.ri.ccf.org/robrien/OBrCast2004 and 
will eventually also include examples involving

- analysis of covariance (PROC GLMPOWER)
- confidence intervals (PROC POWER)
- equivalency testing (PROC POWER)
- finding lower confidence limits for power using existing data (custom SAS macro).

 

HYPOTHESIS TESTING

 

WILL ADJUNCTIVE THERAPY USING DCA REDUCE MORTALITY IN CHILDREN WITH SEVERE MALARIA? (PART 1) 

 

Peter Stacpoole, MD, PhD, directs the General Clinical Research Center at the University of Florida. He has spent 
decades investigating the safety and efficacy of dichloroacetate (DCA) for treating lactic acidosis (toxic levels of lactic 

The March of Science
• Observational, exploratory, or pilot studies may not 

require sample-size analyses.
• Confirmatory studies usually require sample-size 

analyses.
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 Figure 1: The March of Science in medical research.
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acid in the blood) in chronic and acquired diseases. Malaria remains one of the world’s foremost health problems. 
According to a report released in 2003 by the World Health Organization, malaria kills at least one million people 
annually, mostly children under five in sub-Saharan Africa. Lactic acidosis is a frequent complication in severe malaria. 
It is also an independent
statistical predictor of death, and a plausible biological 
rationale supports the hypothesis that lactic acidosis is a 
contributing cause of death. A team led by Dr. Stacpoole 
conducted a randomized, double-blind controlled trial of 
quinine only versus quinine+DCA. They concluded that a 
single infusion of DCA was well-tolerated, did not appear to 
interfere with quinine, and, as hypothesized, reduced blood 
lactate levels (Agbenyega, et al., 2003). The sample size of N = 
62 + 62 was much too small to support comparing mortality 
rates. The authors concluded that a large prospective study 
was warranted.

Let us suppose that Dr. Sol Capote (fictitious) heads the tropical disease research program at the World Health 
Organization (WHO), which has decided to design a large clinical trial that will address this question effectively. Dr. 
Capote is an experienced investigator, so he knows that substantial thought, effort, and experience need to go into 
developing the sample-size analysis and the rest of the statistical considerations.

 

P-VALUES AND POWER

 

The WHO study will use a randomized, double-blind design to compare quinine-only with quinine+DCA. For reasons 
discussed below, about 2/3 of the subjects will get quinine+DCA. 

The primary analysis will yield a p-value that compares 
the mortality rates of subjects treated with quinine only versus 
those treated with quinine+DCA. Smaller p-values indicate 
greater statistical separation between the two samples, but how 
that p-value is determined is an issue that is secondary to 
understanding sample-size analysis. It may come from one of 
the many ways of comparing two independent proportions, including the classical Pearson chi-square test for 2 

 

�

 

 2 
contingency tables, or it may come from a logistic or hazard modeling that includes co-predictors. Regardless of what 
test is used to get the p-value, if it is small enough (“significant”) and the quinine+DCA mortality rates are better, Dr. 
Capote will report that the study supported the hypothesis that DCA reduces mortality in children with severe malaria 
complicated with lactic acidosis. If the p-value is not small enough (“not significant”), then he will report that the data 
provided insufficient evidence to support the hypothesis.

 

Null and non-null distributions of p-values.

 

 
Our quest here is to figure out Mother Nature. We could do 
this if she gave us an infinitely large, perfectly clean dataset for 
the question at hand, so we could calculate the true effect. But 
we must settle for a random sample. If there is no difference 
between the two groups’ mortality in the infinite dataset, then 
the p-value obtained from the sample is just as likely to be 
0.972 as 0.621 or 0.126 or even 0.001. In short, the null 
distribution of the p-value is flat between 0.0 and 1.0 (Figure 
2, top), and so the chance is 5% that 

 

p

 

 

 

≤

 

 0.05, or 100

 

�

 

% that 

 

p

 

 

 

≤

 

 

 

�

 

.
On the other hand, if DCA has some true effect, good or 

bad, then the distribution of the p-values will be skewed 
towards 0.0 (Figure 2, bottom). This is a non-null distribution of the p-values. The statistical power of the test is the 
chance that 

 

p

 

 

 

≤

 

 

 

�

 

. Do you see why 

 

�

 

 is sometimes called the “null power” of the test? If there is no true effect but 

 

p

 

 

 

≤

 

 

 

�

 

 
indicates otherwise, this triggers a Type I error, which is why 

 

�

 

 is called the Type I error rate. If there is some true effect, 
but 

 

p

 

 > 

 

�

 

, then a Type II error is triggered. In Figure 2, consider the common Type I error rate, 

 

�

 

 = 0.05. Under this 
particular non-null distribution, the power is 0.68, so the Type II error rate is 

 

�

 

 = 0.32. We never know the true
Type II error rates.

The Research Question
• Malaria kills hundreds of thousands of children each 

year.
• Lactic acidosis is a frequent complication in patients 

with severe malaria.
• Higher lactate levels is an independent statistical 

predictor of death. Biological rationale suggests a 
causal link, as well.

• DCA reduces blood lactate levels in many diseases, 
including malaria.

• Does DCA (in addition to quinine) reduce mortality?

Concepts and Issues
• Smaller p-values indicate greater statistical effect in the 

sample.
• How p-values are determined is a secondary issue to 

understanding sample-size analysis.

Concepts and Issues
• Mother Nature, infinite datasets, sample.
• Null p-value distributions are flat.
• Non-null p-value distributions are skewed towards 

0.0.
• If p ≤ �, the test is “significant.” If the true effect is null, 

this Type I error happens with probability �, which we 
can set.

• If p > �, the test is “not significant..” If the true effect is 
non-null, this Type II error happens with probability �, 
which we never know in practice.

• Power = 1 – �.
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Balancing Type I 
and II error rates.

 

 
Recall that Topol, et al. 
(1997) advocated that the 
power should be around 
90%, which puts the Type 
II error rate around 10%. 
We strongly agree. 

Why do so many 
people automatically 
perform power analyses 
using 

 

�

 

 = 0.05 and 80% 
power (

 

�

 

 = 0.20)? We 
doubt they really think 
about it!

For the case in Figure 
2, we could achieve a 
much better Type II error 
rate of 0.13 if we are 
willing to accept a 
substantially greater Type 
I error rate of 20%. That 
is wise thing to consider if 
the consequences of a 
Type II error are greater 
than for a Type I error. 
For many studies, making 
a Type I error may only 
extend the research to 
another stage. This is 
wasteful, of course, but 
making a Type II error 
may halt a journey that 
would ultimately be 
successful. In the early
stages of The March of Science, when the sample sizes are too 
small to support adequate power at 

 

�

 

 = 0.05, it may be 
prudent to use higher Type I error rates, say 

 

�

 

 = 0.20 or more. 
These computations are summarized in Table 1.

 

Table 1: 

 

Summary of computations related to Figure 2.

 

Truth (“Infinite Dataset”)

Decision Based on Sample no effect non-null effect

 

p

 

 > 

 

�

 

“insufficient evidence of effect”

 

correct
Type II error
(1) 

 

�

 

 = 0.32
(2) 

 

�

 

 = 0.13

 

p

 

 

 

≤

 

 

 

�

 

“evidence indicates some effect”

 

Type I error
(1) 

 

�

 

 = 0.05
(2) 

 

�

 

 = 0.20

correct
(1) power = 0.68
(2) power = 0.87

Density

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

power = 0.68
(1)   � = 0.05

Null: DCA has no effect.

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Density

� = 0.32

power = 0.87
(2)   � = 0.20

� = 0.13

Non-Null: DCA reduces mortality 25%.
Quinine-only rate: 0.15

700 receive quinine only
1400 receive quinine + DCA

test statistic: common Pearson chi-square

p-value

p-value

 Figure 2:Null and non-null distributions for p-values. Increasing the Type I error rate 
(�: 0.05 → 0.20) decreases the Type II error rate (�: 0.36 → 0.20).

Concepts and Issues
• Do not automatically set � at 0.05 and/or believe that 

80% power is OK.
• As best you can, design a study that reflects the 

consequences of making Type I and Type II errors.
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P-values are misunderstood, but for a good reason. 

 

Is the p-value the estimated probability that the 
effect being tested is null? For example, does 

 

p

 

 = 0.032 imply that the chance is 96.8% that there is some non-null 
effect? No.

 Rather, this common and important misunderstanding stems not from some picky issue about English, but 
because the p-value is not what we really need to know:

• If a test turns out to be significant (

 

p

 

 

 

≤

 

 

 

�

 

), what is the chance this will be a Type I error?
• If a test turns out to be non-significant (

 

p

 

 > 

 

�

 

), what is the chance this will be a Type II error?
As Zelen (2003) has also opined, these are the critical questions to ask when designing studies, crafting analysis plans, 
and choosing sample sizes.

 

INFERENCE MISTAKE RATES

 

Consider the three studies and their outcomes given in Table 2.

Because

 

,

 

lower values favor DCA efficacy. Which study gives the best scientific evidence that DCA lowers mortality? Obviously 
not #1. But deciding between Studies #2 and #3 is not clear cut, because they have the same p-value, so they appear to 
have the same inferential support. That being the case, most people think #2 is the strongest result, because its relative 
risk of 0.55 is substantially lower than the relative risk of 0.79 found in Study #3. This is reasonable logic. But Study #3 
has 5 times the sample size, so it has greater power. How should that affect your comparison?
Suppose the quinine-only mortality rate is 0.15 and the DCA relative risk is 0.67. With 140 subjects getting quinine-
only and 280 getting quinine+DCA, the power using 

 

�

 

 = 0.05 is about 33%. With 700+1400 subjects, the power is 
90%. Now, in addition, suppose that Dr. Capote and his team are quite impressed with Dr. Stacpoole’s work, so they 
are as optimistic as they can be that DCA is effective. But does that mean they have lost their ordinary scientific 
skepticism and already believe that DCA is affective? Again, consider Feynman (1999):

 

The thing that’s unusual about good scientists is that 

 

…

 

 they’re not so sure of themselves as others usually 
are. They can live with steady doubt, think “maybe it’s so” and act on that, all the time knowing it’s only 
“maybe.” 

 

Dr. Capote’s team understands that for even the most promising experimental treatments, the vast majority fail to 
work when tested extensively. They feel that if Dr. Capote could present to Mother Nature 1000 ideas similar to this 
one, she would tell him that perhaps 700 are worthless (null). What would you expect to happen if Dr. Capote ran all 
1000 trials at average powers of 33% or 90%?

 The breakdown of expected results appears in Table 3. If 700 of the studies are null in their infinite datasets, then 
35 false positive tests (5% of 700) are expected. But with only 33% power there will be only 100 true positives. Thus, 
when a study is significant at 

 

p

 

 

 

≤

 

 0.05, the chance is 35/135 = 0.26 that it is a Type I error (positive inference mistake). 
Likewise, if 

 

p

 

 > 0.05, the chance is 200/865 = 0.23 that it is a Type II error (negative inference mistake). On the other 
hand, if the power is 90%, these inference mistake rates drop to 0.11 and 0.04. Because the purpose of statistical 
hypothesis testing is to get the right answer, Study #3 has stronger results than those for #2. Too few people understand 
that greater power gives you more assurance in making both positive and negative inferences. 

Table 2: Which study has strong evidence that DCA is effective?

Study
Sample Size Mortality Rate DCA Relative Risk

[95% CI] p
Q-Only Q+DCA Q-Only Q+DCA

#1 140 280 13.6% 12.1% 0.89  [0.53, 1.51] .678

#2 140 280 13.6% 7.5% 0.55  [0.31, 0.994] .046

#3 700 1400 14.0% 11.0% 0.79  [0.62, 0.995] .046

DCA Relative Risk
mortality rate for quinine+DCA
mortality rate for quinine only

-------------------------------------------------------------------------------------------------------------=

  SUGI 29   Statistics and Data Analysis



6

WILL ADJUNCTIVE THERAPY USING DCA REDUCE
MORTALITY IN CHILDREN WITH SEVERE MALARIA? (PART 2) 

Here is a synopsis and commentary on how the statistical planning might proceed for Dr. Capote’s trial.
Position along The March of Science. There is now convincing evidence that deaths from malaria are 

related to lactic acidosis and that DCA is generally effective in lowering high lactate levels in the blood (Stacpoole, 
Nagaraja, Hutson, 2003). In a study using a rat model for malaria and lactic acidosis, Holloway, Knox, Bajaj, et al., 
(1995) found and that DCA increased survival when venous lactate concentrations are 5-8.9 mmol/liter (odds ratio > 
2.2, P < 0.021). The animals treated with DCA had a 33% reduction in mortality at 50 hours (relative risk for DCA of 
0.67). The evidence at hand supports a large-scale human trial, but Dr. Capote maintains a healthy scientific 
skepticism. When asked what he thinks about the hypothesis that DCA has some true positive effectiveness in children 
with severe malaria and lactic acidosis, he states that there is still a 50% chance that DCA is not effective. He could 
never be more optimistic until a major trial is completed and efficacy is soundly confirmed.

Study Design. This will be a greatly enlarged version of the trial reported by Agbenyega, Planche, Bedu-Addo, 
et al. (2003): a randomized, double-blind trial comparing quinine-only versus quinine+DCA, where the DCA is given 
in a single infusion of 50 mg/kg. The group’s biostatistician, Dr. Anna Tholus, (fictitious) is aware of the fact that the 
Pearson chi-square test for two independent proportions has slightly more power if the sample sizes are a little 
unbalanced (O’Brien and Muller, 1993). Based on the cost of DCA and its excellent safety record at this dose, the 
WHO team is willing randomize more subjects to quinine+DCA in order to put this potentially beneficial therapy into 
more children on study. West African public health officials would prefer that 2/3 of the subjects get DCA, even if more 
subjects would need to be studied in total.

Subjects. Dr. Capote and his colleagues will study “children” with “severe malaria” who have “lactic acidosis.” All 
of these terms will require operational definitions. The team must formulate the other inclusion/exclusion criteria and 
state them clearly in the protocol. They think it is feasible to study up to 2100 subjects in a single malaria season using 
just centers in their tropical disease research network. If needed, they can add more centers and increase this to 2700.

Table 3: Inference mistake rates for � = 5%, powers of 33% and 90%, and under a belief that there is still a 70% 
chance there is no true effect.

Outcome of Study

N = 140 + 280
p ≤ 0.05

“significant”

p > 0.05

“not significant”

700 studies
no true effect

5% of 700 = 35 95% of 700 = 665

300 studies
average power 33%

33% of 300 = 100 67% of 300 = 200

Positive inference mistake 
rate: 35/135 = 0.26 

Negative inference mistake 
rate: 200/865 = 0.23 

N = 700 + 1400

700 studies
with no true effect

5% of 700 = 35 95% of 700 = 665

300 studies
average power 90%

90% of 300 = 270 10% of 300 = 30

Positive inference mistake 
rate: 35/305 = 0.11 

Negative inference mistake 
rate: 30/695 = 0.04
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Primary outcome measure. Satisfactory recovery within 10 days of beginning therapy. Almost all subjects 
who do not recover satisfactorily within this time will have died. Time to recovery or death (i.e., survival analysis) is not 
a consideration.

Primary analysis. To keep this case study as simple as possible, we will limit our attention to the basic relative 
risk that associates treatment (quinine-only vs. quinine+DCA) with satisfactory recovery by 10 days (no or yes). For 
example, if 90% recovered under quinine+DCA (risk = 0.10) and 82% recovered under quinine-only (risk = 0.18), 
then the estimated relative risk would be 0.10/0.18 = 0.55 in favor of DCA. Two-sided p-values will be based on the 
ordinary Pearson chi-square statistic for association in a 2 � 2 contingency table. The astute reader will see that this 
analysis could be sharpened through the use of a logistic regression model that includes baseline measurements on 
lactate levels, etc. (as was done in Holloway, et al., 1995). The study will be completed in a single malaria season, so 
performing interim analyses is not feasible. These issues are beyond the scope of this paper.

Scenario for the infinite dataset. A prospective 
sample-size analysis requires the investigators to characterize 
the hypothetical infinite dataset for their study. Too often, 
sample-size analysis reports fail to explain the rationale 
undergirding the conjectures. If you explain little or nothing, 
reviewers will question the depth of your thinking and 
planning, and thus the scientific integrity on your proposal. 
Be as thorough as possible and do not apologize for having to make some sound, educated guesses. All good reviewers 
have done this themselves.

Dr. Stacpoole’s N = 62 + 62 study (Agbenyega, et al., 2003) had 8 deaths in each group, giving 95% confidence 
intervals of [5.7%, 23.9%] for the quinine-only mortality rate and [0.40, 2.50] for the DCA relative risk. These results 
are of little help in specifying the scenario. However, WHO public health statistics and epidemiologic studies in the 
literature indicate that about 19% of these patients do not recover by 10 days using quinine only. This figure will likely 
be lower for a clinical trial, because the general level of care will be better than average. Finally, the rat study had a DCA 
relative risk of 0.67 [95% CI: 0.44, 1.02].

Given this information, the research team conjectures that the quinine-only mortality rate is 12-15%. They agree 
that if DCA is effective, it is reasonable to conjecture that it will cut mortality 25-33% (relative risk of 0.67-0.75).

Topol, et al. (1999) spoke about needing sufficient power to detect “a clinically relevant difference between the 
experimental and control therapies.” Some authors speak of designing studies to detect the smallest effect that is 
clinically relevant. How do you define such things? Everyone would agree that mortality reductions of 25-33% are 
clinically relevant. What about 15%? Even a 5% reduction in mortality would be considered very clinically relevant in 
a disease that kills so many people, especially because a single infusion of DCA is relatively inexpensive. Should the 
WHO team feel they must power this study to detect a 5% reduction in mortality? As we shall see, this is infeasible. It 
is usually best to ask: What do we know actually at this point? What do we think is possible? What scenario is 
supportable? Will the reviewers agree?

Using PROC POWER. Dr. Tholus first uses PROC 
POWER to discover that giving DCA to 3/5 of the patients is 
a near optimal allocation in terms of power. Because giving 
DCA to 2/3 of the patients is still favored by officials in West 
Africa and little power will be sacrificed, the WHO team 
agrees that this minor loss statistical efficiency will be offset by 
gains in political efficiencies at the study sites.

The PROC POWER syntax to perform a traditional 
power analysis for this problem is given in Input 1a. Input 1b 
gives a macro that creates a custom RTF-formatted table that 
is suitable for inclusion into your word processor. After some 
minor editing (here, using Adobe® FrameMaker®), we 
produced Table 4In practice, it is often worthwhile for the 
statistician to bring a portable computer to planning meetings 
in order to run various scenarios “live.” These “elicitation” 
sessions can be exciting and fun, and they help to fuse 
everyone around a common plan. In no way, however, should 
anyone be playing “statistical games” just to find some 
scenario that mathematically fits some pre-set sample size you 
want to justify. Good scientists will strive to get close to some 
reasonable and defensible scenarios, recognizing all the time 

Concepts and Issues
• Explain the rationale undergirding your scenarios for 

the infinite data.
• How do you define a “clinically relevant effect?” 
• Clinically relevant effects can often be too small 

statistically to use when powering studies.

What about UnifyPow.sas?
• Users of UnifyPow.sas (O’Brien, 1998; 

www.bio.ri.ccf.org/UnifyPow) will notice similarities in 
syntax with PROC POWER, but POWER is not 
‘UnifyPow ported to SAS.’ POWER is being developed 
anew by SAS Institute, and thus receives more 
rigorous quality control than UnifyPow ever could have 
had.

• In time, both authors hope that PROC POWER 
incorporates all of the good functionality in UnifyPow, 
so that RO’B can retire from freeware development 
and support.

Concepts and Issues
• Avoid perfunctory effort and statistical gamesmanship 

in developing scenarios.
• The process of sample-size analysis improves all 

aspects of the study design and increases the 
proposal’s chances for success.

• Content investigators make final decisions on design 
and sample-size choice.
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that there are no perfect answers in doing this. Most importantly, going through this process forces the key personnel 
(including the statistician) to collaborate on a high scientific level, all before the first subject is studied.

 

.
Inputs 1c and 1d give SAS macro code that combines the alpha rates and power probabilities given in Table 4 with 

Dr. Capote’s current subjective “null prior” probability of 0.50 that DCA is not truly effective. The result is Table 5, 
which displays the positive and negative inference mistake rates, which were computed as illustrated in Table 3. Dr. 
Tholus respects her colleagues scientific integrity and their ability to understand Tables 4 and 5, so she leaves the 
decision making mostly up to them. They are excited to see that all the positive inference mistake rates are below 10%, 
even for N = 2100. However, they are concerned that even with N = 2700, a nonsignificant study at � = 0.05 might 
well be a Type II error (negative inference mistakes rates of 4-25%).

Table 5:  Inference Mistake Rates for DCA Malaria Trial

Table 4: Power for Testing Quinine-only with Quinine+DCA
•

2/3 will get DCA
Alpha

.01 .05

Quinine-only 
Risk

DCA
Relative Risk

Total N Total N
2100 2700 2100 2700

0.12
0.75 .345 .452 .576 .681

0.67 .634 .762 .822 .902

0.15
0.75 .452 .577 .681 .784

0.67 .762 .871 .902 .957

Null Prior Probability: 0.50
Alpha

.010 .050
Total N Total N

2100 2700 2100 2700
Quinine-only 

Risk
DCA

Relative Risk
Outcome Outcome Outcome Outcome 
Sig Not Sig Not Sig Not Sig Not

0.12
0.75 .028 .398 .022 .356 .080 .308 .068 .252

0.67 .016 .270 .013 .194 .057 .158 .053 .093

0.15
0.75 .022 .356 .017 .299 .068 .251 .060 .185

0.67 .013 .194 .011 .115 .053 .093 .050 .043

proc power;
 ODS output output=PowerResults;
 TwoSampleFreq
  GroupWeights =  (1 2) /* 1 qnine only : 2 
qnine+DCA */
  RefProportion /* qnine only */= .12 .15 
  RelativeRisk /* qnine+DCA */ =  .75 .67
  alpha = .01 .05 
  sides = 2
  Ntotal = 2100 2700
  test = pchi /*Pearson's common chi-square*/
  power = .;
 plot key=OnCurves; run;

Input 1a. PROC POWER for DCA Study.
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What sample size would you choose? Should other analyses be run? The code for this case study is at 
www.bio.ri.ccf.org/robrien/OBrCast2004, so you could quickly download it and run other examples yourself.

If relative risk is 0.95. What if the WHO team presumes that DCA is clinically effective, but the relative risk 
may only be 0.95? Using a quinine-only risk rate of 0.15, � = 0.05, 90% power, and a 1:2 randomization weighting, 
PROC POWER finds that the total sample size needs to be almost 105,000. For 80% power and a 2:3 (nearer to 
optimal) weighting, the study still requires over 73,000 subjects. This demonstrates why studies are rarely designed to 
find effects that are at the lower range of “clinically relevant.”

CONCLUSION
Looking back through this paper, you will see only one equation, a simple ratio defining relative risk. In addition, the 
SAS code was straightforward. Yet we had an extensive discussion about matters that rely heavily on statistical theory 
and numerical analysis. Modern software often allows us to all but ignore the underlying mathematics of statistical 
methods in order to concentrate on the subject-matter at hand—in order to do statistical science. Adapting another 
thought by Richard Feynman, working with the equations might help some people gain understanding, but until you 
understand the concepts and issues of what you using those equations to do (here, for sample-size analysis) and figure 
out how they relate to a particular subject-matter problem, then you are just working with some equations.

We first adopt new technologies in order to be more efficient or to improve what we are producing. But as those 
technologies mature, they drive fundamental changes in the way we approach and solve problems. Just as modern 
computing has transformed the ways we do data management and analysis, so is it finally transforming how we do 
statistical planning. And just as data analyses have become evermore sophisticated, so will sample-size analyses. Better 
computing tools will allow us to better customize our sample-size analyses to fit our proposed designs and our 
conjectures for the underlying infinite datasets. Doing this earnestly, honestly and creatively leads to better study 
designs and thus better research outcomes. Accordingly, when reviewers see a strong sample-size analysis section in a 
research proposal, they are much more likely to conclude that the study plan has been well developed.
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%macro TablePower_RR (PowerResults=PowerResults);
*==============================================;
* Tables powers for relative risk problem.     ;
* PowerResults corresponds to ODS statement    ;
* in PROC POWER:                               ;
*    ODS OUTPUT OUTPUT=PowerResults            ;
*==============================================;

data temp; set &PowerResults;
    if Power > .999 then Power = .999;
    run;

proc tabulate data=temp format=4.3 order=data;
title2 "Power Probabilities";
  format Alpha 4.3;
  class RefProportion RelativeRisk Alpha
        sides NTotal;
    var Power;
    table RefProportion="Reference Risk"
        * RelativeRisk="Relative Risk",
      Alpha="Alpha"
        * Ntotal="Total N"
        * Power="Power"*mean=" "
          /rtspace=23;
    run;
title2;
%mend; *TablePower_RR; 

ods rtf file='C:\miscSASoutput\SUGI04_Case1Power.rtf';
%TablePower_RR
ods rtf close;

Input 1b. TablePower_RR macro to get table of powers for relative risk 
problem.
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%macro IMRate (NullPrior=, PowerResults=PowerResults,
   IMRateResults=IMRateResults);
*==================================================;
* Converts Powers to Inference Mistake Rates.      ;
* NullPrior = Prob[Ho is true] (subjective).       ;
* PowerResults corresponds to ODS statement in     ;
* PROC POWER:                                      ;
*    ODS output output=PowerResults                ;
* IMRateResults is output dataset.                 ;
*==================================================;

data &IMRateResults; set &PowerResults;
    NullPrior = &NullPrior;
    result = "Sig";
    IMRate = NullPrior*alpha/
            (NullPrior*alpha + (1 - NullPrior)*power);
    output;
    result = "Not";
    IMRate = (1 - NullPrior)*(1-Power)/
            ((1 - NullPrior)*(1-Power)
                   + NullPrior*(1 - alpha));
    output;
    run;
%mend; *IMRate;

%IMRate (NullPrior=.50)

Input 1c. TablePower_RR macro to get table of powers for relative risk 
problem.

%macro TableIMRate_RR (IMRateData);
*==========================================================;
* Tables Inference Mistake Rates                      ;
* IMRateData is dataset created by calling            ;
*    %IMRate(___, ___, IMRateData)                    ;
*==========================================================;

proc tabulate data=&IMRateData format=4.3 order=data;
title2 "Inference Mistake Rates (IM Rate)";
  format Alpha 4.3;
  class RefProportion RelativeRisk Alpha
        sides NullPrior result NTotal;
    var IMRate;
    table NullPrior="Null Prior Probability: ",
      RefProportion="Reference Risk"
        * RelativeRisk="Relative Risk",
      Alpha="Alpha"
        * Ntotal="Total N"
        * result="Outcome"
        * IMRate="IM Rate"*mean=" "
          /rtspace=23;
    run;
title2;
%mend; *TableIMRate_RR;

ods rtf file='C:\miscSASoutput\SUGI04_Case1IMRates.rtf';
%TableIMRate_RR (IMRateResults)
ods rtf close;

Input 1d. TableIMRate_RR macro to get table of inference mistake rates for relative 
risk problem.
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