

Paper 134-30

A Hands-On Introduction to SAS® DATA Step Programming
Debbie Buck, D. B. & P. Associates, Houston, TX

ABSTRACT
The SAS DATA step is one of the most powerful and versatile software tools available for handling and manipulating
data files, especially large data sets. It is also sometimes somewhat confusing to SAS programmers as to what the
different statements do, what the correct syntax is for these statements, and how they can help you achieve your
goals.

In this workshop we will examine how to get data into a SAS data set, how to create new variables or modify existing
variables, how to conditionally handle variables or observations, how to handle a group of variables in the same way,
and how to control which observations are written to the SAS data set.

INTRODUCTION
To become familiar with SAS DATA step programming, we will discuss a number of commonly used DATA step
statements and then work through exercises utilizing these statements. Some of these will include:

• How to create a SAS data set (DATA statements),
• How to get data into a SAS data set (INFILE/INPUT, SET, MERGE statements),
• How to create or modify variables (Assignment statements),
• How to conditionally execute statements (IF-THEN/ELSE statements),
• How to select specific observations (Subsetting IF statements),
• How to process a group of variables (ARRAY, DO-END statements).

Although there are a number of other statements and options available in the SAS DATA step, the statements above
will provide you with a good grasp on working in the DATA step. We will also use some PROCs or other techniques
to help you examine your data sets or data values.

Many of these statements could have (and have had) entire papers devoted to them individually, but this presentation
is meant as an overview.

In this paper we will look at examples of a sample data set from a blood pressure medication study. This data set
includes patient number, gender, race, date of birth, baseline blood pressure, mid-study blood pressure, and final
blood pressure. Examples from this presentation were run on the SAS System for Windows, but the SAS statements
are applicable to any SAS platform.

CREATING A SAS DATA SET
The first question is “How do I get the data into a SAS data set?”. The data may be in a flat file, existing SAS data
set(s), or a file produced by another software program. If the data is in a flat file or existing SAS data sets, this is
frequently, but not always, achieved in a DATA step. The DATA step always begins with a DATA statement. The
purpose of the DATA statement is to tell SAS that you are starting a DATA step, to name the SAS data set(s) that you
are creating, and to indicate whether this is a permanent or temporary SAS data set. The following are examples of
DATA statements.

 DATA NEWPT; ← temporary SAS data set

 LIBNAME DB ‘C:\SAS\MYDATA’;
 DATA DB.NEWPT; ← permanent SAS data set

What is the purpose of the LIBNAME statement shown in this example, and why do we need it? When reading from
or writing to a permanent SAS data set, the libref (in this case DB) serves as a nickname or an alias that tells SAS
where the SAS data library physically exists. For this example, I am writing a SAS data set named NEWPT to the
SAS data library that exists in the subdirectory C:\SAS\MYDATA.

Which statements follow the DATA statement depend upon where and in what form the data exist.

 1

Hands-on WorkshopsSUGI 30

GETTING THE DATA INTO A SAS DATA SET
Is the Data in a Flat File?
What do I mean by a flat or external file? This is generally a text or ASCII file. A simple example of this might be the
following layout where each record in the raw data file contains information on patient demographics and blood
pressure readings.
Sample record –

01M110/10/25100 95 90

In order to read this external file in
where to find the raw data – the IN
statement. An example of the INFIL

 DATA NEWP

 INFILE ‘
 INP

 RUN;

The INFILE statement has a num
specifying record length, directions
between variable values.

The INPUT statement is determine
standard character and numeric or
can include integers, decimal points
data include date and time values
data, and data values with embedd
and formatted input. Column input
beginning and ending columns. F
pointer, the variable name, and the
of INPUT statements, column and f
determined by whether there is one
record line, or multiple record lines

Did the Program Work Correctly
One habit you should develop is to
SAS log will give you valuable info
WARNINGs, or ERROR messages.

Hands-on WorkshopsSUGI 30

Variable Columns Type
 Patient Number 1-2 numeric
 Gender 3 M, F
 Race 4 1=White
 2=Black
 3=Oriental
 4=Other
 Date of Birth 5-12 MM/DD/YY
 Baseline BP 13-15 numeric
 Mid-Study BP 16-18 numeric
 Final BP 19-21 numeric
to a SAS data set, you need two additional statements. You need to tell SAS
FILE statement, and you need to tell SAS how to read each record – the INPUT
E and INPUT statements is shown below.

T;
A:\TEST1.DAT’; ← tells SAS where raw data exists
UT @1 PTNO 2.
 @3 GENDER $1. ← Formatted input
 @4 RACE $1.
 @5 BDATE MMDDYY8.
 BP1 13-15 ← Column input
 BP2 16-18
 BP3 19-21;

ber of options available which are dependent on the file structure, including
 on how to handle differing record lengths, and the ability to specify delimiters

d by the layout of the variable values within the records and whether the data are
nonstandard. What is meant by standard numeric data? Standard numeric data
, positive and negative numbers and scientific (E) notation. Nonstandard numeric
to be converted to SAS date and time values, hexadecimal and packed decimal
ed commas and dollar signs. The example above uses a combination of column
specifies the variable name, a dollar sign to indicate a character variable, and the
ormatted input shows the beginning column of the variable using the @ column
 correct informat needed to read the data. Although there are several other types
ormatted are two of the most common. The form of the INPUT statement is also
 observation per record line as in the above example, multiple observations per

per observation.

?
check the SAS log any time you run a SAS program or section of a program. The
rmation on the number of observations and variables, as well as any NOTEs,

 The following is the log from our DATA step above.

 2

Partial SAS Log

NOTE: The infile 'A:\TEST1.DAT' is:
 File Name=A:\TEST1.DAT,
 RECFM=V,LRECL=256

 NOTE: 81 records were read from the infile 'A:\TEST1.DAT'.
 The minimum record length was 21.
 The maximum record length was 21.
 NOTE: The data set WORK.NEWPT has 81 observations and 7 variables.

For this example, we can see that 81 records were read (which is the number we knew were in the flat file – make
sure you know your data) and the NEWPT SAS data set has the expected number of observations and variables.
Also, there are no WARNING or ERROR messages. It is tempting to look at any resulting output first if you are
working in the SAS Display Manager, since the Output window opens automatically. However, make sure to always
examine the log.

Every SAS data set has 2 parts – a descriptor portion and a data value portion. The descriptor portion is like an
internal header for the data set and, among other things, contains variable names, variable types (character or
numeric), and variable lengths. It also includes any labels or formats associated with the variables. One way you
can examine the descriptor portion of a SAS data set is with PROC CONTENTS. Running the following code shows
the descriptor portion of the NEWPT temporary SAS data set.

 PROC CONTENTS DATA=NEWPT;
 RUN;

Partial Output

 The CONTENTS Procedure

 Data Set Name: WORK.NEWPT Observations: 81
 Member Type: DATA Variables: 7
 Engine: V8 Indexes: 0
 Created: 12:07 Saturday, February 5, 2005 Observation Length: 48
 Last Modified: 12:07 Saturday, February 5, 2005 Deleted Observations: 0
 Protection: Compressed: NO
 Data Set Type: Sorted: NO
 Label:

 -----Alphabetic List of Variables and Attributes-----

 # Variable Type Len Pos
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
 4 BDATE Num 8 8
 5 BP1 Num 8 16
 6 BP2 Num 8 24
 7 BP3 Num 8 32
 2 GENDER Char 1 40
 1 PTNO Num 8 0
 3 RACE Char 1 41

To examine the data value portion of the SAS data set, you can use PROC PRINT to display the actual observations
in the data set.

 3

Hands-on WorkshopsSUGI 30

 PROC PRINT DATA=NEWPT;
 RUN;

Partial Output

 Obs PTNO GENDER RACE BDATE BP1 BP2 BP3

 1 1 M 1 -12501 100 95 90
 2 2 M 1 -8797 94 90 85
 3 3 F 1 7334 89 78 0
 4 4 F 1 5583 93 93 85
 5 5 F 1 -1768 93 0 90

If you are working in the Display Manager, you can also use the Explorer window to examine both the descriptor and
data value portions of your data sets. In the Explorer window, if you double-click on Libraries, you will see an icon for
each active library. Since we’ve created a temporary SAS data set named NEWPT, if you double-click on WORK an
icon for NEWPT appears. Right-clicking on the icon causes a pull-down menu to appear. Selecting VIEW
COLUMNS results in a window that contains variable information from the descriptor portion. Selecting OPEN
displays the data value portion.

Is the Data in an Existing SAS data set?
If the data you need already exists in one or more SAS data sets, then the INFILE and INPUT statements are
replaced by a SET, MERGE, or UPDATE statement. In this paper we will consider the SET and MERGE statements.
Which is the appropriate statement to use?

SET Statements
If you need to bring data in from an existing SAS data set so that you can modify it, then the SET statement will, by
default, bring into the new data set all variables and all observations from the existing SAS data set. The form of this
DATA step is as follows.
 DATA new-data-set;
 SET old-data-set;
 RUN;

Although the examples in this paper use temporary SAS data sets, these could be any combination of permanent and
temporary SAS data sets.

In looking at the output in the example above, we see that BDATE (Date of Birth) needs to be displayed differently to
be meaningful. We would also like to see the BDATE variable printed with a column header that makes it more clear
as to what information this variable contains. Therefore, in our new data set we want to include a FORMAT
statement and a LABEL statement.

The form of the FORMAT statement, which assigns a format to be associated with a variable (how to display the
variable) is as follows.
 FORMAT variable-name format-name.;

Note the period in the format-name. This is what tells SAS that it is a format, not a variable name. SAS includes a
large number of formats for displaying dates, times, currencies, and other types of data. You can also create your
own formats using PROC FORMAT.

The LABEL statement associates a column header with a variable. The form of a LABEL statement is
 LABEL variable-name=’desired text’;

In SAS Version 8 and above the text portion in a LABEL statement can be up to 256 characters long.

The following code creates a new SAS data set, NEWPT_REV that includes all variables and observations from the
existing SAS data set NEWPT. It also associates a format and label with the variable BDATE.

 4

Hands-on WorkshopsSUGI 30

 DATA NEWPT_REV;
 SET NEWPT;
 FORMAT BDATE DATE9.;
 LABEL BDATE=’Date of Birth’;
 RUN;

 PROC PRINT DATA=NEWPT_REV LABEL;
 RUN;

 Partial Output

 Date of
 Obs PTNO GENDER RACE Birth BP1 BP2 BP3

 1 1 M 1 10OCT1925 100 95 90
 2 2 M 1 01DEC1935 94 90 85
 3 3 F 1 30JAN1980 89 78 0
 4 4 F 1 15APR1975 93 93 85
 5 5 F 1 28FEB1955 93 0 90

Do you need to concatenate (or stack) the data from two or more SAS data sets? Then the SET statement is also
the appropriate statement for this situation. Again, by default, all variables and observations in all of the SAS data
sets listed in the SET statement will be included in the new SAS data set. The following is an example of
concatenating two existing SAS data sets.

 DATA NEWPT_REV;
 SET OLDPT1 OLDPT2;
 RUN;

MERGE Statements
Do you need to combine (or join) two or more data sets by some common variable(s)? Then the MERGE statement
is appropriate. The following example joins information from the NEWPT data set with the observations from the data
set TREAT, matching information by the variable PTNO. The NEWPT_REV data set will contain all variables and
observations from the NEWPT and TREAT data sets.

 PROC SORT DATA=NEWPT;
 BY PTNO;

 PROC SORT DATA=TREAT;
 BY PTNO;

 DATA NEWPT_REV;
 MERGE NEWPT TREAT;
 BY PTNO;
 RUN;

Note that for match-merging, the existing SAS data sets must be sorted by or indexed on the variable(s) in the BY
statement.

CREATING OR MODIFYING VARIABLES
Assignment Statements
Now that you can get the data into your new SAS data set, you need to consider whether the data needs to be
manipulated in some way, such as creating or modifying variables.

If you need to create new variables, the most common way is with assignment statements. The form of an
assignment statement is
 variable=expression;

 5

Hands-on WorkshopsSUGI 30

The expression can be a constant, mathematical operation, or a function. SAS has a large number of functions to
carry out a variety of operations. The form of a function is as follows.
 function-name(argument1, argument2, etc.)

The arguments for a function are dependent upon the purpose and specific requirements for a given function.

For example, if you need to create a variable named AGE, based on the current date, you can use an assignment
statement with a SAS date function in the DATA step.

 DATA NEWPT_REV;
 SET NEWPT;
 AGE = (TODAY() – BDATE)/365;
 RUN;

You can also use assignment statements to modify existing variables. The following shows an example of modifying
an existing variable.
 DATA NEWPT_REV;
 SET NEW;
 AGE = (TODAY() – BDATE)/365;
 AGE = ROUND(AGE,1);
 RUN;

CONDITIONALLY EXECUTING STATEMENTS
IF-THEN/ELSE Statements
IF-THEN statements can be used to conditionally create or modify data. The form of an IF-THEN/ELSE statement is
 IF expression THEN statement;
 ELSE statement;

For example, in this case you need to create a new variable to identify at which medical center a patient was enrolled,
based on patient number. Patients 1-30 were enrolled at Center 1, patients 31-60 were enrolled at Center 2, and
patient numbers 61 and above were enrolled at Center 3. The following IF-THEN/ELSE statements will allow you to
conditionally assign values to your new variable, CENTER.

 DATA NEWPT_REV;
 SET NEWPT;
 AGE=ROUND(((TODAY()-BDATE)/365),1);
 IF PTNO LE 30 THEN CENTER=1;
 ELSE IF PTNO GT 30 AND PTNO LE 60 THEN CENTER=2;
 ELSE IF PTNO GT 60 THEN CENTER=3;
 RUN;

SELECTING OBSERVATIONS
Subsetting IF Statements
If you need to subset your data based upon the values of one or more variables, you can use a Subsetting IF
statement. The form of a subsetting IF is as follows.
 IF expression;

The expression is evaluated, and if the expression is true, processing continues on that observation. If the
expression is false, processing on that observation stops, the observation is not saved to the data set being created,
and the DATA step moves on to the next observation.

The following example limits the observations in the data set to those patients from Center 1 who are under 30 years
of age.

 6

Hands-on WorkshopsSUGI 30

 DATA NEWPT_REV;
 SET NEWPT;
 AGE=ROUND(((TODAY()-BDATE)/365),1);
 IF PTNO LE 30 THEN CENTER=1;
 ELSE IF PTNO GT 30 AND PTNO LE 60 THEN CENTER=2;
 ELSE IF PTNO GT 60 THEN CENTER=3;
 IF CENTER=1 AND AGE LT 30;
 RUN;

PROCESSING A GROUP OF VARIABLES
ARRAY, DO-END Statements
Sometimes a group of variables needs to be handled in the same way. ARRAY statements can process a group of
variables. The DO loop handles the repetitive processing. The form of an ARRAY statement follows.
 ARRAY array-name {number of elements} $ length list-of-elements;

The $ is necessary for arrays of character variables. The length is optional.

The form of a DO loop is:
 DO index-variable = start TO stop;
 SAS statements involving array-name{index-variable}
 END;

The start and stop values specify which elements in the array should be the starting and stopping points in
processing the DO loop.

In this example, blood pressure measurements were recorded in the raw data with a value of zero when the
measurement was missing. The ARRAY statement in conjunction with DO-END statements changes the zero values
to a missing value for all blood pressure variables.

 DATA NEWPT_REV (DROP=I);
 SET NEWPT;
 AGE=ROUND(((TODAY()-BDATE)/365),1);
 IF PTNO LE 30 THEN CENTER=1;
 ELSE IF PTNO GT 30 AND PTNO LE 60 THEN CENTER=2;
 ELSE IF PTNO GT 60 THEN CENTER=3;
 IF CENTER=1 AND AGE LT 30;
 ARRAY BP {3} BP1 BP2 BP3;
 DO I=1 TO 3;
 IF BP{I}=0 THEN BP{I}=.;
 END;
 RUN;

Output

Obs PTNO GENDER RACE Birth BP1 BP2 BP3 AGE CENTER
 1 3 F 1 30JAN1980 89 78 . 25 1

CONCLUSION
In this workshop we have examined how to get data into a SAS data set, how to create new variables or modify
existing variables, how to conditionally handle variables or observations, how to control which observations are
written to the SAS data set, and how to handle a group of variables in the same way. Each of the statements we
have examined has additional capabilities which were beyond the scope of this presentation. Hopefully, this paper
has provided you with guidelines to make SAS DATA step programming user-friendly to you.

 7

Hands-on WorkshopsSUGI 30

REFERENCES
SAS Institute Inc. (1990) SAS Language and Procedures Guide, Version 6, First Edition, Cary, NC: SAS Institute Inc.

SAS Institute Inc. (1999) SAS Online Doc., Version 8, Cary, NC: SAS Institute Inc.

AUTHOR CONTACT INFORMATION
Debbie Buck

 D. B. & P. Associates
 Houston, TX 77095
 Voice: 281-256-1619
 Fax: 281-256-1634
 Email: debbiebuck@houston.rr.com

SAS and all other SAS Institute Inc. product or service names are registered trademark or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

 8

Hands-on WorkshopsSUGI 30

mailto:debbiebuck@houston.rr.com

	SUGI 30 Proceedings Table of Contents

