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ABSTRACT 
 
Toxicologically-based quantitative risk assessment is concerned with estimating 
human risks based upon experimental data linking an environmental agent to a 
known outcome (tumor incidence, acute toxicity, etc.).  For dichotomous 
outcomes dose-response curves are modeled as complex functions of dose 
which often require specialized software to estimate.  
 
The SAS procedure NLMIXED readily allows for maximum likelihood estimation 
of binomial response data to any non-linear function.  This power gives the SAS 
system the ability to fit dichotomous response curves that have traditionally been 
modeled using specialized software.  For this paper excess risk is estimated 
within SAS using NLMIXED and the SAS MACRO programming language. Nine 
dose-response curves are fit examining the excess risk associated with renal 
tubular degeneration in ethylene glycol exposed rats. The results are compared 
with those given using the USEPA Benchmark Dose Software. The results show 
that these models can be reliably implemented within the SAS system producing 
very similar results as the USEPA software. 
 
INTRODUCTION 
 
Toxicologically based quantitative risk assessment is concerned with estimating 
human risks based upon experimental data linking an environmental hazard to a 
known outcome (tumor incidence, acute toxicity, etc.). Risk, the probability of 
some adverse response, is often derived from dose-response models which 
parameterize risk as a function of dose. These models are commonly fit using 
maximum likelihood (ML) estimation.  The complexities of the likelihood equation 
and corresponding risk estimation have forced investigators to use specialized 
software outside of SAS to conduct their analyses.  This is not only an 
inconvenience for experienced SAS users, but prevents the modeler from 
incorporating techniques which are not directly implemented by the third party 
software.  For example, if one wanted to examine the behavior of a given dose-
response curve through Monte Carlo simulation this task is overly cumbersome, 
given current software, as most risk estimation packages do not provide the 
ability to generate random data sets.   
 
This paper examines SAS as a software package which can be used to model 
risk. Specifically we demonstrate the ability of NLMIXED to model risk derived 
from dichotomous data. Doses associated with a specified level of excess risk 
above control response, so-called benchmark doses, are estimated as well. This 
is done using the procedure NLMIXED with help from the MACRO programming 
language.  Nine popular models, which are also parameterized in the United 
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States Environmental Protection Agency (USEPA) Benchmark Dose Software 
[1], are fit and compared to results from that software package.  
 
MODELING RISK 
 
Toxicologically based risk assessment frequently models the probability of 
adverse outcome, π , as a function of dose, d . Though this dose-response 
relationship can be modeled through a wide class of functions, we restrict our 
discussion to implementing nine popular dose-response curves, which are also fit 
by the USEPA Benchmark Dose Software [1]. These models are as follows  
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where ( )αΓ  = gamma function evaluated at α , ( )xΦ  = CDF for N(0,1) and γπ =i  
when d=0 for models (2) and (6). Further ),,( ndf θ  in model (4) is an n degree 
polynomial of the dose d  having the vector of coefficientsθ .  Models (1)-(9) are 
fit using maximum likelihood estimation. Further, in models (2),(4) and (6)-(8) the 
slope terms ),( θβ  are bounded to be non-negative, in models (3) and (9) the 
power term )(α  is bounded below by one, and the background response term 

)(γ  for  models (2)-(4) and (6)-(9) is bounded between zero and one.  
 
For any particular dose-response function excess risk is often characterized 
through the use of the benchmark dose [2]. A Benchmark dose (BMD) is defined 
as the dose that increases risk over the background response rate by some 
amount relative to the control response. For dichotomous outcomes this pre-
specified level, known as the benchmark response (BMR), is commonly given 
values of 1 and 10%.  Given this value of the BMR and a model representing the 
dose-response [e.g. models (1)-(9)] excess risk can be found by finding the dose 
(BMD) which satisfies the following equation 
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where )0(π  is the background response.  The above formulation is known as the 
extra risk, and can be thought of as the probability that an effect is observed 
among individuals who would not have the adverse response in the absence of 
exposure to the environmental hazard.  Though other definitions of excess risk 
exist, specifically added risk, and are implemented in the USEPA software, for 
illustration purposes the extra risk formulation is used in the following discussion.  
It should be noted that the added risk formulation can also be programmed into 
NLMIXED as it is very similar to the extra risk formulation.  
 
RENAL TUBULAR DEGENERATION DATA ANALYSIS 
 
Consider a 10 day exposure study where Sprague-Dawley rats were exposed to 
ethylene glycol (EG) in their drinking water [3], with the number of rats exhibiting 
renal tubular degeneration measured as the observed response.  In this 
experiment, ten rats were exposed to one of 5 dose groups (0, 0.5, 1.0, 2.0 and 
4.0% EG).  The observed proportions of rats exhibiting renal tubular 
degeneration were 2/10, 2/10, 2/10, 6/10, and 9/10 for EG concentrations of 0, 
0.5, 1.0, 2.0, and 4.0%. The data are analyzed using models (1-9). 
 
For illustration, consider the Weibull model (9) and the definition for extra risk 
given in equation (10).  The SAS procedure NLMIXED can provide ML estimates 
for this model’s parameters as well as estimates for the BMD. The parameters 
are estimated directly through the use of the MODEL statement, but because the 
BMD is specified through model parameters, its ML estimate must be computed 
through programming statements which algebraically relate the ML estimates for 
the model parameters to the BMD.  In the case of the assumed model NLMIXED 
programming statements estimate the BMD using the following equation 
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which is found by substituting the Weibull model (9) into the extra risk equation 
(10) and algebraically solving for the BMD term. The following NLMIXED code 
which implements the above, subject to the bounds on the parameters of 

1≥α , 0≥β  and 10 ≤≤ γ . 
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data EGdata;  
 input dose obs n;  
 cards;  
0 2 10 
0.5 2 10 
1.0 2 10 
2.0 6 10 
4.0 9 10 
; 
 
%LET BMR = 0.1;  
 
PROC NLMIXED data= EGdata;  
 PARMS _GAMMA = 0.006 _BDOSE = 0.5 _ALPHA =  1;  
 BOUNDS _GAMMA >= 0, _GAMMA <= 1, _ALPHA >= 1, _BDOSE >= 0;  
 P = _GAMMA;  
 IF (DOSE > 0) THEN DO; 
  _LINK = _BDOSE * (DOSE**_ALPHA);  
  P = _GAMMA + (1-_GAMMA)*(1-EXP(-_LINK)); 
 END;  
 _X = -LOG(1-&BMR);  
 _BMD = (_X/_BDOSE)**(1/_ALPHA); 
 CALL SYMPUT("BMD",_BMD);  
 MODEL OBS ~ BINOMIAL(N,P); 
RUN; 

 
 
 
Though NLMIXED can be used to model non-linear mixed models and has a 
variety of features to aid in this facility, the above code only utilizes it’s maximum 
likelihood estimation ability, which include the statements PARMS, BOUNDS, 
and MODEL. These programming statements, which are described in the 
documentation [4], set up the initial parameter estimates, the bounds on the 
parameters, and the likelihood equation respectively.  The Weibull dose-
response curve in the above code is estimated through programming statements 
found in lines 16-20, where the variable “dose” represents the amount of 
exposed EG,  “obs” represents the number observed rats exhibiting renal tubular 
degeneration, and n is the number of rats in each dose group.  Further lines 21-
23 algebraically specify the ML estimate for the benchmark dose, and line 24 
specifies the likelihood equation. Though it is possible to output the BMD 
estimate to a dataset using the PREDICT statement, this is not done in favor of 
outputting the final value to a MACRO variable labeled BMD, which is referenced 
as &BMD; this variable is created in line 25.  
 
 
Though the above code is sufficient to allow NLMIXED’s algorithm to converge 
using the EG data some data sets may require more precise starting values.  In 
this case, a grid search is often sufficient for most problems which require more 
precise starting values.  The above code produces the following estimates which 
correspond within three significant figures to the output produced by the USEPA 
Benchmark Dose Software.  
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TABLE 1. 
 NLMIXED USEPA 
 MLE Standard

Error 
MLE Standard 

Error 
γ̂  0.1724 0.08877 0.1724 0.08877 
α̂  2.0275 0.8264 2.0275 0.8263 
β̂  0.1373 0.1382 0.1373 0.1382 

 
CONFIDENCE INTERVALS FOR THE BENCHMARK DOSE 
 
Though NLMIXED can be used to estimate the BMD as well as asymptotic 
confidence intervals, using the PREDICT statement, it is not advisable to use the 
confidence intervals provided by this facility of NLMIXED. These intervals are 
based upon standard large sample asymptotic approximations, which may not be 
appropriate in small sample situations. Instead Crump and Howe [5] suggest the 
use of the profile likelihood in computation of the confidence interval for the 
benchmark dose, as it generally gives better coverage behavior in such 
conditions.   
 
It is convenient to look at the profile likelihood in terms of a likelihood ratio test, 
and remember the fact that that the -2 log of the likelihood ratio follows an 
approximate chi-squared distribution with n degrees of freedom, where n 
represents the number of parameters fixed under the null hypothesis. A profile 
likelihood confidence interval, in essence, is a likelihood ratio test where one 
finds a “null” model that fixes the parameter of interest while allowing the other 
model parameters to vary such that the -2 log-likelihood of this model is different 
from the -2 log-likelihood of the original or “full” model by 2

)1,1( αχ − . Where 2
)1,1( αχ −  

represents the (1-α)th quantile of a chi-squared distribution with one degree of 
freedom. Thus the two distinct values that fix the parameter of interest and 
reduce the maximum likelihood by 2

)1,1( αχ −  represent the 100(1-α)% upper and 
lower confidence bounds on this parameter. In our context the lower bound of the 
benchmark dose (BMDL) is found by searching for the BMD that changes the -2 
log-likelihood of the full model by 2

)21,1( αχ − , where the 1-2α is chosen because the 
confidence interval of interest is one sided. Though models (1)-(9) do not 
explicitly parameterize the BMD, they can be parameterized as a function of the 
BMD.  
  
It is not possible to directly estimate profile likelihood confidence intervals using 
NLMIXED; however one can use a combination of the MACRO programming 
language and the Output Delivery System to estimate the proper 100(1-α)% 
profile likelihood based confidence interval.  This is achieved by fixing a 
parameter in the model relative to the BMD and maximizing the likelihood relative 
to the other free parameters in the model.  Again for illustration we examine the 
Weibull model. In this situation we set β  equal to a function of the BMD i.e.  
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By using equation (12) one can decrease the value of the BMD until the resultant 
-2 log-likelihood is greater than 2

)21,1( αχ − .  This is done using the macro 
programming language as follows. 
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%macro boundBMD(BMDL,MLIKE,CL); 
%let BMR = 0.1;  
%let MLIKE = %sysevalf(&mlike/2);  
data _temp_;  
  val = cinv(1-2*(1-&CL),1)*0.5;  
  call symput("CRITVAL",val);  
run;  
%LET CRITLIKE = &MLIKE; 
 
%DO %WHILE (%SYSEVALF(&CRITLIKE - &MLIKE < &CRITVAL)); 
 *set up the initial parameters for the new likelihood; 
 %LET FIRSTTOKEN = 1;  
 %LET LASTBMDL = &BMDL;  
 %LET BMDL = %SYSEVALF(0.98*&BMDL);  
 %LET BOUNDS = _GAMMA >= 0, _GAMMA <= 1, _ALPHA >= 1,_ALPHA <= 18; 
 %LET SMODEL = ;  
       data pe; set ParameterEstimates; if(Parameter='_BDOSE')then delete; 
run;  
 data pe;  
  set pe; 
 run;  
 ods listing close;  
 ods output fitstatistics = fitstatistics 
       ParameterEstimates=ParameterEstimates;   
  *fit this new “constrained” likelihood; 
 proc nlmixed data= one;  
  parms /data=pe; ;  
  bounds &bounds;  
   
  _X = (-LOG(1-&BMR))**(1/_ALPHA);  
               *solve for the BETA parameter BDOSE as a function of the BMD;  
  _BDOSE = (_X/&BMDL)**_ALPHA; 
  P = _GAMMA;  
  IF (DOSE > 0) THEN DO; 
   _LINK = _BDOSE*DOSE**_ALPHA;  
   P = _GAMMA + (1-_GAMMA)*(1-EXP(-_LINK)); 
  END;  
  MODEL OBS ~ BINOMIAL(N,P); 
 run;  
 ods listing;  
       *obtain the Fit statistics to determine if the algorithm has bounded  

the BMDL; 
 data fitstatistics;  
  set fitstatistics;  
  format value best16.;  
  informat value best16.;  
  if (Descr = "-2 Log Likelihood");  
  NegLogLike = value/2; 
  keep value NegLogLike;  
 run;  
 data _temp_;  
  set fitstatistics;  
  call symput("CRITLIKE",NegLogLike);  
 run;  
%END; 
%put &bmdl;  
%mend;  
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To invoke this macro one needs to have the ML estimate of the BMD, the -2 log-
likelihood of the unconstrained ML and the desired 100(1-α)%  confidence level. 
These values are represented by the macro variables BMDL, MLIKE, and CL 
respectively. Further, to link it with the code used for the EG data one would 
need to specify the parameter estimates of the maximum likelihood in a data set 
named ParameterEstimates; an example of retrieving this dataset is found within 
the macro on line 24.  
 
The above macro iteratively lowers the estimate of the BMDL by 2% until -2 log-
likelihood is reduced by 2

)21,1( αχ −  as stored in &CRITVAL.  Lines 13-22 initialize 
the variables for the current iteration, 27-40 use NLMIXED to optimize the 
likelihood with the “ β ” constrained by the BMD, and lines 42-55 retrieve the 
necessary statistics from the data sets to determine the stopping criteria.  
Though this procedure puts a lower bound on the BMD it dose not produce a 
valid 100(1-α)% confidence level.  To find the approximate 100(1-α)% confidence 
interval one can take the value from the lower bound procedure described above, 
the ML estimate, along with a root finding algorithm to find this value to any 
specified level of tolerance.  In the context of the profile likelihood one finds the 
root of the function  
  2

)1,1())ˆ(ln(2))ˆ(ln(2 αχ −−+− mlprofile DMBlDMBl        (13) 

where )ˆ( mlDMBl  represents the likelihood function evaluated at the ML and 

)ˆ( profileDMBl  represents the likelihood function evaluated at the current estimate 
of the BMD lower bound.  
 
The above code has been packaged with a root finding procedure in one macro 
which estimates dose-response model parameters, the BMD, and BMDL given 
the BMR with a specified confidence level. These macros have been applied to 
the EG data using the 9 dose-response and produce the following output.  
 
TABLE 2. 

Model  
BMD 
10% 

BMDL 
10% 

BMD 
1% 

BMDL 
1% 

Logistic 0.59 0.40 0.07 0.04 
Log-Logistic 1.07 0.39 0.52 0.08 
Gamma 1.01 0.28 0.47 0.03 
Multi-Stage 
Quadratic  0.86 0.25 0.27 0.02 

Probit 0.56 0.40 0.06 0.04 
Log-Probit 1.10 0.42 0.64 0.15 
Quantal-
Linear 0.29 0.18 0.03 0.02 

Quantal-
Quadratic 0.86 0.65 0.27 0.20 

Weibull 0.88 0.26 0.28 0.03 
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The estimates of table 2 correspond within three significant figures to the 
estimates from the USEPA Benchmark Dose Software.  
 
 
ESTIMATION ABILITY 
 
Consider a hypothetical experiment where four groups of 50 rats are exposed to 
an environmental agent and mortality, which is recorded at the end of the two 
year study, is the measured response.  In this experiment, the four dose groups 
represent 0, 25, 50 and 100% of the maximum dose administered, with mortality 
proportions of 4/50, 11/50, 32/50, and 50/50 corresponding respectively to the 
dose-groups (e.g. 0, 25, 50 and 100%).   If one were to fit the two-stage 
multistage model (4) using the USEPA Benchmark Dose Software, the software 
would fail to converge to the ML estimate.  However if one were to model risk 
using the procedures outlined above one would obtain the ML estimates for all 
parameters as well as the benchmark dose value 0.16 with the 95% lower bound 
of this estimate being 0.12.  
 
  
CONCLUSION 
 
The SAS procedure NLMIXED allows for the fitting of many common BMD 
models. Though NLMIXED alone is not sufficient to find proper confidence 
intervals the MACRO programming language in combination with NLMIXED can 
be used effectively to compute profile likelihood based confidence intervals. 
Further the NLMIXED procedure has been shown to find the maximum likelihood 
when other models fail to find the optimum. Finally, as SAS  is a multipurpose 
statistical package, it is versatile enough to extend present BMD software 
capabilities beyond those provided by specialized software.  
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