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Abstract 
Principal Component Analysis (PCA) and Exploratory Factor Analysis (EFA) are both variable reduction techniques 
and sometimes mistaken as the same statistical method. However, there are distinct differences between PCA and 
EFA. Similarities and differences between PCA and EFA will be examined. Examples of PCA and EFA with 
PRINCOMP and FACTOR will be illustrated and discussed.   
 
Introduction 
You want to run a regression analysis with the data you’ve collected. However, the measured (observed) variables 
are highly correlated. There are several choices 
�� use some of the measured variables in the regression analysis (explain less variance) 
�� create composite scores by summing measured variables (explain less variance) 
�� create principal component scores (explain more variance).  
 
The choice seems simple. Create principal component scores, uncorrelated linear combinations of weighted 
observed variables, and explain a maximal amount of variance in the data.  
 
What if you think there are underlying latent constructs in the data? Latent constructs 
�� cannot be directly measured 
�� influence responses on measured variables 
�� include unreliability due to measurement error.  
 
Observed (measured) variables could be linear combinations of the underlying factors (estimated underlying latent 
constructs and unique factors). EFA describes the factor structure of your data.  
 
Definitions  
An observed variable can be measured directly, is sometimes called a measured variable or an indicator or a 
manifest variable. 
A principal component is a linear combination of weighted observed variables. Principal components are 
uncorrelated and orthogonal. 
A latent construct can be measured indirectly by determining its influence to responses on measured variables. A 
latent construct could is also referred to as a factor, underlying construct, or unobserved variable.   
Unique factors refer to unreliability due to measurement error and variation in the data. 
Principal component analysis minimizes the sum of the squared  perpendicular distances to the axis of the 
principal component while least squares regression minimizes the sum of the squared distances perpendicular to the 
x axis (not perpendicular to the fitted line) (Truxillo, 2003).  
Principal component scores are actual scores. 
Factor scores are estimates of underlying latent constructs. 
Eigenvectors are the weights in a linear transformation when computing principal component scores.  
Eigenvalues indicate the amount of variance explained by each principal component or each factor.  
Orthogonal means at a 90 degree angle, perpendicular. 
Obilque means other than a 90 degree angle. 
An observed variable “loads” on a factors if it is highly correlated with the factor, has an eigenvector of greater 
magnitude on that factor.  
Communality is the variance in observed variables accounted for by a common factors. Communality is more 
relevant to EFA than PCA (Hatcher, 1994). 
 
Principal Component Analysis (PCA) 
�� Is a variable reduction technique 
�� Is used when variables are highly correlated 
�� Reduces the number of observed variables to a smaller number of principal components which account for most 

of the variance of the observed variables 
�� Is a large sample procedure 
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The total amount of variance in PCA is equal to the number of observed variables being analyzed.  In PCA, observed 
variables are standardized, e.g., mean=0, standard deviation=1, diagonals of the matrix are equal to 1. The amount 
of variance explained is equal to the trace of the matrix (sum of the diagonals of the decomposed correlation matrix).   
 
The number of components extracted is equal to the number of observed variables in the analysis. The first principal 
component identified accounts for most of the variance in the data. The second component identified accounts for the 
second largest amount of variance in the data and is uncorrelated with the first principal component and so on. 
Components accounting for maximal variance are retained while other components accounting for a trivial amount of 
variance  are not retained.  Eigenvalues indicate the amount of variance explained by each component. Eigenvectors 
are the weights used to calculate components scores.  
 
Exploratory Factor Analysis (EFA) 
�� Is a variable reduction technique which identifies the number of latent constructs and the underlying factor 

structure of a set of variables 
�� Hypothesizes an underlying construct, a variable not measured directly 
�� Estimates factors which influence responses on observed variables 
�� Allows you to describe and identify the number of latent constructs (factors) 
�� Includes unique factors, error due to unreliability in measurement 
�� Traditionally has been used to explore the possible underlying factor structure of a set of measured variables 

without imposing any preconceived structure on the outcome (Child, 1990).  
 
Figure 1 below shows 4 factors (ovals) each measured by 3 observed variables (rectangles) with unique factors. 
Since measurement is not perfect, error or unreliability is estimated and specified explicitly in the diagram.  Factor 
loadings (parameter estimates) help interpret factors. Loadings are the correlation between observed variables and 
factors, are standardized regression weights if variables are standardized (weights used to predict variables from  
factor), and are path coefficients in path analysis. Standardized linear weights represent the effect size of the factor 
on variability of observed variables. 
 
  

 
 

Figure 1. Diagram of four factor model 
 
Variables are standardized in EFA, e.g., mean=0, standard deviation=1, diagonals are adjusted for unique factors,  
1-u.  The amount of variance explained is the trace (sum of the diagonals) of the decomposed adjusted correlation 
matrix.  Eigenvalues indicate the amount of variance explained by each factor. Eigenvectors are the weights that 
could be used to calculate factor scores. In common practice, factor scores are calculated with a mean or sum of 
measured variables that “load” on a factor. 
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In EFA, observed variables are a linear combination of the underlying factors (estimated factor and a unique factor). 
Communality is the variance of observed variables accounted for by a common factor. Large communality is strongly 
influenced by an underlying construct. 
 
Community is computed by summing squares of factor loadings 
d1

2 = 1 – communality = % variance accounted for by the unique factor 
d1 = square root (1-community) = unique factor weight (parameter estimate) 

 
Similarities 
�� PCA and EFA have these assumptions in common: 
�� Measurement scale is interval or ratio level 
�� Random sample - at least 5 observations per observed variable and at least 100 observations.  
�� Larger sample sizes recommended for more stable estimates, 10-20 observations per observed variable 
�� Over sample to compensate for missing values 
�� Linear relationship between observed variables 
�� Normal distribution for each observed variable 
�� Each pair of observed variables has a bivariate normal distribution 
�� PCA and EFA are both variable reduction techniques. If communalities are large, close to 1.00, results could be 

similar. 
 
PCA assumes the absence of outliers in the data. EFA assumes a multivariate normal distribution when using 
Maximum Likelihood extraction method.  
 
Differences 

Principal Component Analysis Exploratory Factor Analysis 
Principal Components retained account for a maximal 
amount of variance of observed variables 

Factors account for common variance in the data 

Analysis decomposes correlation matrix Analysis decomposes adjusted correlation matrix 
Ones on the diagonals of the correlation matrix Diagonals of correlation matrix adjusted with unique 

factors  
Minimizes sum of squared perpendicular distance to 
the component axis 

Estimates factors which influence responses on 
observed variables 

Component scores are a linear combination of the 
observed variables weighted by eigenvectors 

Observed variables are linear combinations of the 
underlying and unique factors 

 
PCA decomposes a correlation matrix with ones on the diagonals. The amount of variance is equal to the trace of the 
matrix, the sum of the diagonals, or the number of observed variables in the analysis.  PCA minimizes the sum of the 
squared perpendicular distance to the component axis (Truxillo, 2003). Components are uninterpretable, e.g., no 
underlying constructs. Principal components retained account for a maximal amount of variance.  
 
The component score is a linear combination of observed variables weighted by eigenvectors. Component scores are 
a transformation of observed variables (C1 = b11x1 + b12x2 + b13x3 + . . . ). 
 
The PCA Model is Y = XB 
Where Y is a matrix of observed variables 
 X is a matrix of scores on components 
 B is a matrix of eigenvectors (weights) 
 
SAS code to run PCA is  

proc factor method=prin priors=one; 
where priors specify that the prior communality estimate for each variable is set to one, e.g., ones on the diagonals of 
the correlations matrix. Using Method=prin with priors=one options runs principal component analysis. 
 
EFA decomposes an adjusted correlation matrix. The diagonals have been adjusted for the unique factors. The 
amount of variance explained is equal to the trace of the matrix, the sum of the adjusted diagonals or communalities. 
Factors account for common variance in a data set.  Squared multiple correlations (SMC) are used as communality 
estimates on the diagonals. Observed variables are a linear combination of the underlying and unique factors. 
Factors are estimated, (X1 = b1F1 + b2F2 + . . . e1  where e1 is a unique factor). 
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The EFA Model is Y = Xβ+ E 
where Y is a matrix of measured variables 
 X is a matrix of common factors 
 β is a matrix of weights (factor loadings) 
 E is a matrix of unique factors, error variation 
 
An example of SAS code to run EFA is  

proc factor method=ml priors=smc; 
where priors specify that the prior communality estimate for each variable is set to its squared multiple correlation 
with all other variables, e.g., diagonals of the correlation matrix are adjusted by unique factors.  Using method=ml 
with priors=smc options runs a maximum likelihood factor analysis. Using method=uls with priors=smc runs an 
unweighted least squares factor analysis. Using method=prin with priors=smc options runs a principal factor 
analysis. 
 
PCA STEPS 
1) initial PCA – number of components equal to number of variables, only the first few components will be retained 
2) Determine the number of components to retain 

a. Eigenvalue > 1 criterion (Kaiser criterion, (Kaiser, 1960)) 
Each observed variable contributes one unit of variance to the total variance. If the eigenvalue is greater  
than 1, then each principal component explains at least as much variance as 1 observed variable. 

b. Scree test – look for an elbow and leveling, large space between values, sometimes difficult to 
determine the number of components 

c. Proportion of variance for each component (5-10%) 
d. Cumulative proportion of variance explained (70-80%) 
e. Interpretability – principal components do not exhibit a conceptual meaning  

3) Rotations is a linear transformation of the solution to make interpretation easier (Hatcher, p.28)  With an 
orthogonal rotation, loadings are equivalent to correlations between observed variables and components. 

4) Interpret rotated solution 
5) Summarize results in a table 
6) Prepare paper 

a. Describe observed variable 
b. Method, rotation 
c. Criterion to determine number of components, eigenvalue greater than 1, proportion of variance 

explained, cumulative proportion variance explained, number of components retained 
d. Table, criterion to load on component  

 
EFA Steps (similar to PCA).  
1) initial extraction 

• each factor accounts for a maximum amount of variance that has not previously been accounted for by the 
other factors 

• factors are uncorrelated 
• eigenvalues represent amount of variance accounted for by each factor 

2) determine number of factors to retain 
• scree test, look for elbow 
• proportion of variance 
• prior communality estimates are not perfectly accurate, cumulative proportion must equal 100% so some 

eigenvalues will be negative after factors are extracted, e.g., if 2 factors are extracted, cumulative proportion 
equals 100% with 6 items, then 4 items have negative eigenvalues 

• interpretability 
• at least 3 observed variables per factor with significant factors 
• common conceptual meaning 
• measure different constructs 
• rotated factor pattern has simple structure (no cross loadings)   

3) rotation – a transformation  
4) interpret solution 
5) calculate factor scores 
6) results in a table 
7) prepare results, paper 
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PROC and options for PCA 
PRINCOMP – a procedure to perform principal component analysis 
Data=  specifies dataset to be analyzed 
Out=   output dataset containing original data and principal component scores 
Prefix=  specifies prefix for naming principal components 
N=  specifies number of components to retain 
FACTOR – a procedure to perform exploratory factor analysis, principal component analysis 
Method=principal, performs PCA with priors=one 
Rotate=varimax, promax – rotation methods are orthogonal, oblique 
Scree requests a scree plot of eigenvalues 
Priors=one, sets values of the diagonals of correlation matrix 
Flag, * flags loadings above a specified value 
Reorder, sort pattern matrix and rotated pattern matrix from largest to smallest loading for each factor 
Mineigen= specifies minimum eigenvalue 
 
PROC and options for EFA 
PROC FACTOR is a procedure to run exploratory factor analysis and principal component analysis 
DATA= specifies dataset to be analyzed 
PRIORS=SMC, squared multiple correlations used as adjusted diagonals of the correlation matrix 
METHOD=ML,ULS, specifies maximum likelihood and unweighted least squares methods 
ROTATE=PROMAX (ORTHOGONAL), VARIMAX(OBLIQUE) 
SCREE, requests a scree plot of the eigenvalues 
N=  specifies number of factors 
MINEIGEN=1, specifies select factors with eigenvalues greater than 1 
OUT= data and estimated factor scores, use raw data and N= 
FLAG=, include a flag (*) for factor loadings above a specified value 
 
PCA or EFA? 
Determine the appropriate statistical analysis to answer research questions a priori.. It is inappropriate to run PCA 
and EFA with your data.  PCA includes correlated variables with the purpose of reducing the numbers of variables 
and explaining the same amount of variance with fewer variables (prncipal components). EFA estimates factors,   
underlying constructs that cannot be measured directly.  
 
In the examples below, the same data is used to illustrate PCA and EFA. The methods are transferable to your data.   
Do not run both PCA and EFA, select the appropriate analysis a priori. 
 
Data and Participants 
Data is from the National Longitudinal Survey of Youth , a longitudinal study of achievement, behavior, and home 
environment. The original NLSY79 sample design enabled researchers to study longitudinal experiences of different 
age groups as well as analyze experiences of women, Hispanics, Blacks, and economically disadvantaged.  The 
NLSY79 is a nationally representative sample of 12,686 young men and women who were 14- to 22-years old when 
first surveyed in 1979 (Baker, Keck, Mott, & Quinlan, 1993).  
 
As part of the NLSY79, mothers and their children have been surveyed biennially since 1986. Although the NLSY79 
initially analyzed labor market behavior and experiences, the child assessments were designed to measure academic 
achievement as well as psychological behaviors. The child sample consisted of all children born to NLSY79 women 
respondents participating in the study biennially since 1986. The number of children interviewed for the NLSY79 from 
1988 to 1994 ranged from 4,971 to 7,089. The total number of cases available for the analysis is 2212.  

 
Measurement Instrument 
The PIAT (Peabody Individual Achievement Test) was developed following principles of item response theory (IRT).  
PIAT Reading Recognition, Reading Comprehension, and Mathematics Subtest scores are measured variables in the 
analysis  Tests were admininstered in 1988, 1990, 1992, and 1994. 
 

Statistics and Data AnalysisSUGI 30

 



 6 

 
 

Examples 
PCA with PRINCOMP  
The PRINCOMP procedures runs principal component analysis on the dataset named rawfl. Correlated variables are 
PIAT math, reading recognition, and reading comprehension scores from 1988, 1990, 1992, and 1994. Eigenvalues 
are output to a dataset named meignen. The eignvalues are plotted with the PROC PLOT procedure to show a scree 
plot.  
 
proc princomp data=rawfl; 
  var math88 math90 math92 math94 readr88 readr90 readr92 readr94 
      readc88 readc90 readc92 readc94; 
      ods output eigenvalues=meigen; 
proc plot data=meigen; 
  plot eigenvalue * Number; 

 
Output below from the PRINCOMP porcedure shows eigenvalues of the correlation matrix.  
A prior criteria has been set to select the number of principal components (PC) that will explain a maximal amount of 
variance. Criteria are that each PC explain at least 5% of the variance, the cumulative variance is at least 75%, and 
eigenvalues are greater than one. Remember an eigenvalues greater than one explains at least as much variance as 
the variance explained by one variable (ones on the diagonals of the correction matrix).  
 
From the output below, 2 principal components have eigenvalues of 8.28815058and 1.04770385. A third PC has an 
eigenvalue of 0.69715466, below the 1.0 eigenvalue criteria. Proportion of variance explained by the first 3 PCs is 
69%, 9%, and 6%, meeting the criteria. Cumulative variance explained by 2 PCs is 78% and by 3 PCs is 84%. Two 
principal components are retained, they meet all criteria.  
 
The PRINCOMP Procedure 
            Eigenvalues of the Correlation Matrix 
        Eigenvalue    Difference    Proportion    Cumulative 
   1    8.28814048    7.24043663        0.6907        0.6907 
   2    1.04770385    0.35054919        0.0873        0.7780retain 2 components 
   3    0.69715466    0.31370076        0.0581        0.8361  
   4    0.38345390    0.06882399        0.0320        0.8680 
   5    0.31462990    0.02470323        0.0262        0.8943 
   6    0.28992667    0.04134964        0.0242        0.9184 
   7    0.24857703    0.01229147        0.0207        0.9391 
   8    0.23628556    0.03297872        0.0197        0.9588 
   9    0.20330684    0.06144279        0.0169        0.9758 
  10    0.14186405    0.04657411        0.0118        0.9876 
  11    0.09528994    0.04162283        0.0079        0.9955 
  12    0.05366711                      0.0045        1.0000 

 
The analysis was run with n=2, to retain 2 principal components. Output below illustrates eigenvalues indicating the 
amount of variance explained, and eigenvectors, the weights to calculate components scores. 
 
proc princomp data=rawfl n=2; 
   var math88 math90 math92 math94 readr88 readr90 readr92 readr94 
       readc88 readc90 readc92 readc94; 

 
 
The PRINCOMP Procedure 
            Eigenvalues of the Correlation Matrix 
        Eigenvalue    Difference    Proportion    Cumulative 
   1    8.28814048    7.24043663        0.6907        0.6907 
   2    1.04770385                      0.0873        0.7780 

Statistics and Data AnalysisSUGI 30

 



 7 

 
 

           Eigenvectors 
                Prin1         Prin2 
math88       0.276591      -.397613 
math90       0.292381      -.118885 
math92       0.277473      0.162226 
math94       0.256202      0.303288 
readr88      0.295449      -.431803 
readr90      0.316860      -.059956 
readr92      0.307683      0.179242 
readr94      0.289108      0.302284 
readc88      0.290135      -.440298 
readc90      0.301597      -.046715 
readc92      0.292798      0.231146 
readc94      0.261855      0.382680 

 
Principal components scores are calculated with eigenvectors as weights. Values are rounded for illustration.  SAS 
calculates the PC scores with eigenvalues shown above. 
 
Prin1 = 0.28math88 +  0.29math90 + 0.28 math92 + 0.26math94 + 0.30readr88 + 0.32readr90  
         +  0.31readr92 + 0.29readr94 + 0.29readc88 + 0.30readc90 + 0.29readc92 + 0.26readc94   
 
Prin2 = -0.40math88 – 0.12math90 + 0.16math92 + 0.30mathj94 –0.43readr88 – 0.05readr90 
      + 0.18readr92 + 0.30readr94 – 0.44readc88 – 0.5readc92 + 0.23readc92 + 0.38readc94 
  
PCA with FACTOR and rotation   
The FACTOR procedure with compute a principal components analysis including rotation.  The code below performs 
the same analysis as PRINCOMP and includes a varimax rotation (orthogonal). Datasest is rawfl, method is principal, 
rotation is varimax, diagonals of the correlation matrix are equal to one, 2 PC retained, original data and component 
scores output to dataset pclsub, component loadings are reordered from largest to smallest values for each factor, 
variables in the analysis are math, reading recognition, reading comprehension over 4 timepoints. 
  
proc factor data=rawfl method=p rotate=v priors=one plot n=2 out=pc1sub reorder; 
   var math88 math90 math92 math94 readr88 readr90 readr92 readr94 
       readc88 readc90 readc92 readc94; 
 
Results of the factor procedure illustrate eigenvalues. eigenvectors, and variance explained by each component.. The 
rotated factor pattern shows weights to calculate component scores.  The factor procedure labels items as “factor”   
even though PCA was run. In this analysis “factor” could be replaced with “principal component”.  
  
The FACTOR Procedure 
Initial Factor Method: Principal Components 
 
Prior Communality Estimates: ONE 
 
Eigenvalues of the Correlation Matrix: Total = 12  Average = 1 
 
        Eigenvalue    Difference    Proportion    Cumulative 
   1    8.28814048    7.24043663        0.6907        0.6907 
   2    1.04770385    0.35054919        0.0873        0.7780 
   3    0.69715466    0.31370076        0.0581        0.8361 
   4    0.38345390    0.06882399        0.0320        0.8680 
   5    0.31462990    0.02470323        0.0262        0.8943 
   6    0.28992667    0.04134964        0.0242        0.9184 
   7    0.24857703    0.01229147        0.0207        0.9391 
   8    0.23628556    0.03297872        0.0197        0.9588 
   9    0.20330684    0.06144279        0.0169        0.9758 
  10    0.14186405    0.04657411        0.0118        0.9876 
  11    0.09528994    0.04162283        0.0079        0.9955 
  12    0.05366711                      0.0045        1.0000 
2 factors will be retained by the NFACTOR criterion. 
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        Rotated Factor Pattern 
                Factor1         Factor2 
readr94         0.82158         0.33687 
readc94         0.81971         0.22319 
readc92         0.78003         0.39760 
readr92         0.77550         0.46571 
math94          0.75265         0.27189 
math92          0.69977         0.41954 
readr88         0.32556         0.90157 
readc88         0.30842         0.89759 
math88          0.30938         0.83904 
readr90         0.62892         0.66359 
math90          0.53623         0.66015 
readc90         0.60581         0.62384 

 
Variance Explained by Each Factor      (principal components) 
   Factor1         Factor2 
 4.9598291       4.3760152 
 
Component scores are calculated with the following equations (rounded weights). 
 
Prin1 = 0.82readr94 + 0.82readc94 + 0.78readc92 + 0.78math94 + 0.75math94 + 0.70math92 
         + 0.33readr88 + 0.31readc88 + 0.31math88 + 0.63readr90 + 0.54math90 + 0.61readc90 
 
Prin2 = 0.34read94 + 0.22readc94 + 0.40readc92 + 0.47readr92 + 0.27math94 + 0.42math92  
         + 0.90readr88 + 0.90readc88 + 0.84math88 + 0.66readr90 + 0.66math90 + 0.62readc90 
 
 
EFA with FACTOR   
Exploratory factor analysis with dataset rawfl, method is maximum likelihood, scree plot of eigenvalues, diagonals of 
the correlation matrix are equal to squared multiple correclations, measured variables are math, reading recognition, 
reading comprehension over 4 timepoints. 
 
proc factor data=rawfl method=ml scree priors=smc; 
   var math88 math90 math92 math94 readr88 readr90 readr92 readr94 
       readc88 readc90 readc92 readc94; 
 
Three factors are retained, shown as cumulative variance of 1.0215 (below). Preliminary eigenvalues are 
43.7192325, 4.9699785, 1.4603799, larger than the amount of variance explained by one variable.  Each factor  
explains 89%, 10% and 3% of the variance.  
 
The FACTOR Procedure 
Initial Factor Method: Maximum Likelihood 
Preliminary Eigenvalues: Total = 49.0952995  Average = 4.09127496 
        Eigenvalue    Difference    Proportion    Cumulative 
   1    43.7192325    38.7492540        0.8905        0.8905 
   2     4.9699785     3.5095987        0.1012        0.9917 
   3     1.4603799     0.8226791        0.0297        1.0215 
   4     0.6377007     0.5299327        0.0130        1.0345 
   5     0.1077680     0.0819166        0.0022        1.0367 
   6     0.0258514     0.0874121        0.0005        1.0372 
   7    -0.0615606     0.1892583       -0.0013        1.0359 
   8    -0.2508189     0.0309477       -0.0051        1.0308 
   9    -0.2817666     0.0602684       -0.0057        1.0251 
  10    -0.3420350     0.0922321       -0.0070        1.0181 
  11    -0.4342670     0.0208965       -0.0088        1.0093 
  12    -0.4551635                     -0.0093        1.0000 
3 factors will be retained by the PROPORTION criterion. 
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Hypothesis tests are both rejected, no common factors and 3 factors are sufficient. In practice, we want to reject the 
first hypotheses and accept the second hypothesis. Squared multiple correlations indicate amount of variance 
explained by each factor.  Eigenvalues of the weighted reduced correlation matrix  show. eigenvalues of 62.4882752, 
7.5300396, and 1.9271076. Proportion of variance explained is 0.8686, 0.1047, and 0.268. Cumulative variance for 3 
factors is 100%. 
 
          Significance Tests Based on 995 Observations 
                                                           Pr > 
             Test                     DF    Chi-Square     ChiSq 
H0: No common factors                 66    13065.6754    <.0001 
HA: At least one common factor 
H0: 3 Factors are sufficient          33      406.9236    <.0001 
HA: More factors are needed 
 
Chi-Square without Bartlett's Correction       409.74040 
Akaike's Information Criterion                 343.74040 
Schwarz's Bayesian Criterion                   181.94989 
Tucker and Lewis's Reliability Coefficient       0.94247 
 
      Squared Canonical Correlations 
   Factor1         Factor2         Factor3 
0.98424906      0.88276725      0.65836583 
 
Eigenvalues of the Weighted Reduced Correlation Matrix:  
Total = 71.9454163  Average = 5.99545136 
        Eigenvalue    Difference    Proportion    Cumulative 
   1    62.4882752    54.9582356        0.8686        0.8686 
   2     7.5300396     5.6029319        0.1047        0.9732 
   3     1.9271076     1.2700613        0.0268        1.0000 
   4     0.6570464     0.4697879        0.0091        1.0091 
   5     0.1872584     0.0202533        0.0026        1.0117 
   6     0.1670051     0.0724117        0.0023        1.0141 
   7     0.0945935     0.1415581        0.0013        1.0154 
   8    -0.0469646     0.1141100       -0.0007        1.0147 
   9    -0.1610746     0.0355226       -0.0022        1.0125 
  10    -0.1965972     0.0469645       -0.0027        1.0097 
 
 
EFA with FACTOR and rotation 
Options added to the factor procedure are a varimax rotation (orthogonal), reorder to arrange the pattern matrix from 
largest to smallest loading for each factor, plot to plot factors, n=3 to keep 3 factors, out=facsub3 to save original data 
and factor scores.  
 
The factor pattern and rotated factor pattern matrices and final communality estimates (diagonals of the adjusted 
correlation matrix) are shown. Hypothesis tests are both rejected, no common factors and 3 factors are sufficient.  
 
proc factor data=rawfl method=ml rotate=v n=3 reorder plot 
            out=facsub3 priors=smc; 
   var math88 math90 math92 math94 readr88 readr90 readr92 readr94 
       readc88 readc90 readc92 readc94; 
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The FACTOR Procedure 
Initial Factor Method: Maximum Likelihood 
Preliminary Eigenvalues – same as above 
Significance Tests – same as above 
Squared Canonical Correlations – same as above 
Eigenvalues of the Weighted Reduced Correlation Matrix – same as above 
 
                    Factor Pattern 
                Factor1         Factor2         Factor3 
readr88         0.94491        -0.26176         0.02539 
readc88         0.92409        -0.26406         0.00801 
readr90         0.89145         0.20878         0.11313 
readc90         0.83206         0.19923         0.06487 
readr92         0.83040         0.40006         0.16396 
math88          0.81886        -0.13400        -0.21690 
math90          0.79779         0.12447        -0.30123 
readc92         0.75910         0.39092         0.01863 
readr94         0.75071         0.46900         0.15896 
math92          0.70865         0.32157        -0.37062 
readc94         0.64675         0.41433        -0.05782 
math94          0.62910         0.37008        -0.35975 
  
The FACTOR Procedure 
Rotation Method: Varimax 
            Orthogonal Transformation Matrix 
                       1               2               3 
       1         0.54103         0.75766         0.36502 
       2         0.65147        -0.65205         0.38783 
       3         0.53186         0.02797        -0.84637 
 
                Rotated Factor Pattern 
                Factor1         Factor2         Factor3 
readr92         0.79710         0.37288         0.31950 
readr94         0.79624         0.26741         0.32138 
readr90         0.67849         0.54244         0.31062 
readc92         0.67528         0.32076         0.41293 
readc90         0.61446         0.50233         0.32608 
readc94         0.58909         0.21823         0.44571 
readr88         0.35420         0.88731         0.22191 
readc88         0.33219         0.87255         0.22813 
math88          0.24037         0.70172         0.43051 
math92          0.39578         0.31687         0.69707 
math94          0.39013         0.22527         0.67765 
math90          0.35250         0.51487         0.59444 
 
Final Communality Estimates and Variable Weights 
Total Communality: Weighted = 71.945422   Unweighted = 9.364379 
Variable    Communality        Weight 
math88       0.73553429     3.7804035 
math90       0.74270969     3.8855883 
math92       0.74295833     3.8909129 
math94       0.66215006     2.9610723 
readr88      0.96202122    26.3349931 
readr90      0.85107493     6.7170126 
readr92      0.87649299     8.0949108 
readr94      0.80879089     5.2288375 
readc88      0.92372805    13.1051008 
readc90      0.73621916     3.7926495 
readc92      0.72939551     3.6952039 
readc94      0.59330358     2.4587311 
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Factor scores could be calculated by weighting each variable with the values from the rotated factor pattern matrix..  
In common practice, factor scores are calculated without weights. The mean or sum of variables is calculated for 
variables that load, are highly correlated with the factor. Factor scores could be calculated with a mean as illustrated 
below. 
 
Factor1 = mean(readr92, readr94, readr90, readc92, readc90, readc94); 
Factor2 = mean(readr88, readc88, math88); 
Factor3 = mean(math92, math94, math90); 
 
Conclusion 
Principal Component Analysis and Exploratory Factor Analysis are powerful statistical techniques. The techniques 
have similarities and differences. A priori decisions on the type of analysis to answer research questions allow you to 
maximize your knowledge.  
 
WAM (Walk away message) 
Principal components are a weighted linear combination of correlated variables, explain a maximal amount of 
variance of the variables, are uninterpretable.  Factors are underlying constructs, not directly measured, influence 
responses on measured variables, and are influenced by measurement error (unique factors).     
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