
1

Paper 239-30

Customizing ODS Statistical Graphs
Cynthia Zender, SAS Institute Inc., Cary, NC

Catherine Truxillo, SAS Institute Inc., Cary, NC

ABSTRACT
Have you heard about ODS Graphics or seen some of the demos? If you are a statistician interested in obtaining
easy graphics from statistical procedures, ODS Graphics features provide an automated way of exploring statistical
results with a picture. However, if you are a SAS programmer interested in customizing the plots automatically
produced by ODS Graphics, you can benefit from an understanding of the graph and style templates that SAS
provides for these plots, especially to make changes that persist from one application to the next.

Follow the authors on a journey of discovery with ODS Graphics, as they explain how to access and modify graph
templates. By the end of the presentation, which includes code samples and demos, you will have a better
understanding of the relationship between statistical procedures, graph templates, style templates, and DATA
NULL programs. The authors take you through every step of their discovery process.

INTRODUCTION
Beginning with SAS®9 a series of new features became available on an experimental basis: ODS Statistical Graphs.
These features promise to revolutionize the way that statistical output is presented using SAS software. In order to
discuss the highlights of ODS Graphics, we will explore how to modify output using Graph and Style Templates with a
DATA _NULL_ program to obtain customized results.

Keep in mind that the syntax demonstrated in this paper is unique to SAS 9.1.3 and is still experimental. By the time
ODS statistical graphics are production the syntax elements will change. Indeed, the way some procedures work with
ODS Graphics will change as well. In the appendix to this paper, the authors have included the full text of some of
the SAS 9.1.3 version of the programs; in addition, they have listed a URL from which you can download all 10
demonstration programs.

Furthermore, we want to share with you the reasoning and approach behind our paper. Cynthia is the ODS and
report person. She's been teaching ODS classes and writing ODS courses since ODS was first introduced.
Catherine is the statistics person. She's been teaching and writing SAS/STAT courses since before SAS Version 8.
Neither one of us could have done this paper alone. So this paper represents a team collaboration.

Cynthia has been getting questions from students about ODS Graphics and how it works for almost a year now. She
was motivated to work on a very concrete example to address those questions. But Cynthia is not a statistician. And
since every paper needs an organizing principle, something to motivate the paper, Cynthia asked Catherine if there
was some example of a statistical graph that she would like to see accomplished using ODS Graphics. Then
Catherine told Cynthia about a data set used for some multivariate analysis examples that represented responses to
a gambling questionnaire. PROC PRINCOMP was one of the procedures used with the data set for analysis. Rather
than see all of the graphs that the procedure produces with ODS Graphics, Catherine wanted to see only the
scatterplots for principal components, which are also referred to as scoreplots. Because PROC PRINCOMP
produces scoreplots only for the first few principal components, Catherine wanted to know how to plot any
combination of the principal component variables, and how to combine two scoreplots into a single display. In the
process of discussing how to accomplish these changes, we discussed other changes that would be helpful in the
production of customized graphs – such as the use of housekeeping information on the graph, or the addition of a grid
or of axis reference lines to the graph. In the process of figuring out how to accomplish this task in SAS 9.1.3, we
discovered a lot about the interrelationships between the statistical procedure, the graph template, the style template,
and DATA _NULL_.

But we have to be very clear. We did not really start with a "problem" to solve. This paper is intended to answer the
question "How does ODS Graphics work?" and, as such, presents several different scatterplot examples that enable
us to explore ODS Graphics and its interrelationships with other SAS and ODS components. If you are interested in
simple ways to use ODS Graphics or easy changes to make, refer to the SUGI paper by Rodriguez (2004). ODS
Graphics is very easy to use and most statistical users will seldom need to (or even want to) use some of these
techniques. However, for professional SAS programmers who need to create highly customized graphs, or who just
want to add to their ODS knowledge, it is essential that they have an understanding of the interaction between graph
and style template and how DATA _NULL_ programs can be used with graph templates.

SUGI 30 Tutorials

2

So in the spirit of exploration, we invite you on our journey of discovery.

UNDERSTANDING THE BASICS: OVERVIEW OF ODS STATISTICAL GRAPHICS
With ODS Graphics, it is no longer necessary to save data points or results to an output data set, possibly transpose
or manipulate the data points, and then display them with a graphical procedure for many of the graphs that analysts
commonly use in statistical analysis. For SAS 9.1, a modification to the Output Delivery System (ODS) enables a
group of SAS procedures to create statistical graphics as automatically as tables. This feature is referred to as ODS
Statistical Graphics (or ODS Graphics). ODS Graphics uses Graph Templates and Graph Style elements to achieve
presentation-quality graphical results. Graph template definitions are written in an experimental graph template
language, which has been added to the TEMPLATE procedure in SAS 9.1.

If a procedure usually has results graphically represented in a certain way (with a scatterplot or a bar chart, for
example), then the graphs will automatically be produced if you enable or turn on the ODS Graphics facility (and in
some cases, request the plots within the procedure). The list of procedures that currently support ODS Graphics is
shown in the following table.

Procedures That Support ODS Graphics
SAS/STAT SAS/ETS Other

ANOVA
CORRESP
GAM
GENMOD
GLM
KDE
LIFETEST
LOESS
LOGISTIC

MI
MIXED
PHREG
PRINCOMP
PRINQUAL
REG
ROBUSTREG

ARIMA
AUTOREG
ENTROPY
EXPAND
MODEL
SYSLIN
TIMESERIES
UCM
VARMAX
X12

CORR (Base SAS)
HPF (High-Performance Forecasting)

Since PROC PRINCOMP is used with data from a survey of gambling data, we were interested in whether PROC
PRINCOMP supported ODS Graphics. For information about the kinds of graphical output produced for these
procedures, consult the SAS®9 documentation for each procedure. For information about the syntax of Graph
templates, refer to Chapter 15, "Statistical Graphics Using ODS – Experimental" in the SAS/STAT User's Guide.

BASIC ODS GRAPHICS PROGRAM
The fundamental method of invoking ODS Graphics is with the combination of ODS GRAPHICS ON/ODS
GRAPHICS OFF statements.

ods html path='.' (url=none)
 gpath='.' (url=none)
 file='princomp_default.html'
 style=statistical;
ods graphics on;

proc princomp data = work.gamblegrp cov std;
title 'Default PRINCOMP Output';
var dsm1-dsm12;
run;

ods graphics off;
ods html close;

If you run this program with the ODS Graphics statements in place, you will find all the tabular output from PROC
PRINCOMP followed by all the automatic graphs produced for the analysis. And since ODS Graphics uses Graph
style elements, the tables and the graphs will complement each other in terms of colors, fonts, and overall
presentation aspects.

SUGI 30 Tutorials

3

Selected PRINCOMP Tabular Output:

Selected PRINCOMP Graphical Output:

SUGI 30 Tutorials

4

METHODOLOGY
The steps that we will use to produce and customize our ODS Graphics results will be the same steps that you can
follow to investigate any kind of template, not just a graph template:

1. Understand the ODS output object of interest (use ODS TRACE).
2. Select only the ODS output object of interest (use ODS SELECT).
3. Examine the graph template to determine how changes can be made.

a. Modify existing graph template for use with procedure.
b. Make custom graph template for use with DATA _NULL_ (optional).

4. Examine the style template of choice to determine any desired changes.
5. Test and refine the templates as needed to produce the desired ODS results.

USING ODS TRACE
The fundamental unit of ODS processing is an OUTPUT OBJECT. Beginning in SAS Version 7, an OUTPUT
OBJECT represented the calculated numbers, text, and statistics from a procedure bound to a TABLE template that
specified how the numbers, text, and statistics should be presented in the output table.

Starting in SAS®9, as we saw in the PROC PRINCOMP demonstration, certain procedures automatically produce
graphical output when the procedure output is routed to ODS destinations such as RTF, PDF, and HTML. If we
submit the PROC PRINCOMP example using the GAMBLEGRP data, we find that PROC PRINCOMP produces 12
output objects: 6 tabular output objects and 6 graphical objects (with the COV and STD options).

Through the use of ODS TRACE, we can find exactly which output objects are created and isolate the one that we're
interested in. By default, ODS TRACE output is placed in the SAS Log. When we examine the log, we see that in
addition to the tabular output objects, ODS TRACE also shows the graphical objects that ODS uses. In general, the
kind of information available from ODS TRACE is the same information that is available if you explore the Properties
of an object in the SAS Results Window. Note that you will receive the following messages in the SAS Log when you
use ODS Graphics statements:

WARNING: Statistical graphics displays created with ODS are experimental in this
release.
NOTE: ODS Statistical Graphics will require a SAS/GRAPH license when it is
declared production.

Partial ODS TRACE Output (not all output objects are shown):

Tabular Output Graphical Output
Name: NObsNVar
Template: Stat.PrinComp.NObsNVar

Name: SimpleStatistics
Template:
Stat.PrinComp.SimpleStatistics

Name: Corr
Template: Stat.PrinComp.Corr

Name: EigenvaluePlot
Template:
Stat.Princomp.Graphics.EigenvaluePlot

Name: PrinCompPatternPlot
Template: Stat.Princomp.Graphics.PatternPlot

Name: PrinCompScoresPlot12
Template:

SUGI 30 Tutorials

5

Name: Eigenvalues
Template: Stat.PrinComp.Eigenvalues

Stat.Princomp.Graphics.CompScoresPlot

Name: PrinCompScoresPlot13
Template:
Stat.Princomp.Graphics.CompScoresPlot

Upon examination of the output, we decide that we want to use the PrinCompScoresPlot12 graph object as the
"starter" graph.

USING ODS SELECT
In a production report or a journal article, we might want tabular output from PROC PRINCOMP included in our ODS
output. However, for demonstration purposes, we will limit the output to only the graph of interest. We would use an
ODS SELECT statement to limit the output to the single graph object.

The previous program is modified to have one of the following ODS SELECT statements: The rule for ODS SELECT
is that you can use the short name, the label, the entire label path, or part of the label path or any combination of
these component names:

ods select Princomp.PrinCompScoresPlot12;
ods select PrinCompScoresPlot12;
ods select 'The Princomp Procedure'.'Principal Components Scores Plot: 1st vs
2nd'

When we submit the previous demonstration program, using the second statement above, we get the following
output:

In the demo program, demo4_select.sas, we actually get two graphical outputs because we selected the output
object for PRIN1 v PRIN2 as shown above and the output object for PRIN1 v PRIN3 (not shown). The full text of the
program is shown in the appendix. Now we want to examine the graph template to plan our modifications.

SUGI 30 Tutorials

6

EXAMINE THE GRAPH TEMPLATE
Just as you use PROC CONTENTS to see the contents of a SAS data set, you must use either the TEMPLATE
Browser or PROC TEMPLATE to view the full text of a SAS template. If you are in an interactive SAS session, you
can open the Templates Window by typing odstemplates (or simply odst) on the SAS command line. Or, in the
Results Window, place your cursor on the word '”Results" next to the folder and click the right mouse button. In the
pop-up menu, select Templates to open the Templates Window. Alternately, you can submit PROC TEMPLATE
code to show the template source in the SAS Log Window or write the template source to an external file. The PROC
TEMPLATE code is shown below. The first example writes the template source to the SAS Log; the second example
writes the template source code to the ASCII text file specified in the FILE= option.

Example 1: Write Template Code to SAS Log Example 2: Write Template Code to File
proc template;
 source
 Stat.PrinComp.Graphics.CompScoresPlot/

 store=sashelp.tmplmst;
run;

proc template;
 source
 Stat.PrinComp.Graphics.CompScoresPlot/

 file='CompScores.sas';
run;

If you use the interactive methods or the first PROC TEMPLATE example, you will see the complete source code that
was used to create the compiled template. If you use the second PROC TEMPLATE example and then open the
ASCII text file CompScores.sas, you will see the main DEFINE block for the template, but you will not see the opening
PROC TEMPLATE statement or the closing RUN statement. If you want to use this code in a PROC TEMPLATE
step, you must supply these two required statements.

Code in SAS Log or in Template Browser Window
proc template;
define statgraph Stat.PrinComp.Graphics.CompScoresPlot;
 notes "Principal Component Scores Plot";
 dynamic _Title YVAR XVAR;
 layout gridded;
 layout gridded / padbottom=5;
 entrytitle _TITLE;
 endlayout;
 layout overlay / yequated=TRUE
 yaxisopts=(label=YVAR
 display=(label line ticks values))
 xaxisopts=(label=XVAR
 display=(label line ticks values)
 integer=true thresholdmin=1.0 thresholdmax=1.0);
 scatterplot y=YVAR x=XVAR / tip=(OBSNUM)
 markersymbol=CHARACTER
 markersymbolgroup=OBSNUM
 xoffsetmin=0.05 xoffsetmax=0.05
 yoffsetmin=0.05 yoffsetmax=0.05;
 endlayout;
 endlayout;
end;
run;

Compare to

Code in ASCII file (from FILE= Option of PROC TEMPLATE)
(No PROC TEMPLATE statement)
define statgraph Stat.PrinComp.Graphics.CompScoresPlot;
 notes "Principal Component Scores Plot";
 dynamic _Title YVAR XVAR;
 layout gridded;
 layout gridded / padbottom=5;
 entrytitle _TITLE;
 endlayout;
 layout overlay / yequated=TRUE
 yaxisopts=(label=YVAR
 display=(label line ticks values))
 xaxisopts=(label=XVAR
 display=(label line ticks values)
 integer=true thresholdmin=1.0 thresholdmax=1.0);
 scatterplot y=YVAR x=XVAR / tip=(OBSNUM)

SUGI 30 Tutorials

7

 markersymbol=CHARACTER
 markersymbolgroup=OBSNUM
 xoffsetmin=0.05 xoffsetmax=0.05
 yoffsetmin=0.05 yoffsetmax=0.05;
 endlayout;
 endlayout;
end;
(No RUN statement)

This is the template source code used with SAS 9.1.3. The syntax is experimental and, like other features of ODS
Graphics, will change when ODS Graphics becomes production in a later release. The ODS Graphics developers are
still working to refine and perfect the graph template language that you would use with PROC TEMPLATE to modify
or design a custom template. Under routine circumstances, you should never need to change Graph templates.
However, if professional SAS programmers need to create highly customized graphics, then template or style
modification can provide the power they need if they are making many graphs and want the changes to persist from
one session or application to the next.

HOW THE GRAPH TEMPLATE WORKS
Graph templates work automatically with the supported SAS procedures because each procedure sends predefined
names that correspond to data points used by that procedure's template. The template provides the information
needed by ODS Graphics to produce the graph in ODS destinations (if the ODS GRAPHICS ON/OFF statements are
used). For more information, refer to Chapter 15, "Statistical Graphics Using ODS—Experimental" in the SAS/STAT
User's Guide.

In addition, the LAYOUT statements instruct ODS how to arrange the graph components in the output. Layouts are
specified in a layout block that begins with a LAYOUT statement and ends with an ENDLAYOUT statement. Within a
LAYOUT statement block, you can specify plot statements, text statements, and other layout statements, which
enables nested layouts of graph components, such as side by side graphs, or legend boxes, or, as shown in our
graph, a title component and a scatterplot component together in the output.

There are three types of layout allowed: Gridded, Overlay, and Lattice. The graph object of interest to us uses two of
these three layout types, GRIDDED and OVERLAY. In brief, you use the LAYOUT GRIDDED statement to specify
any number of areas and arrange them in any way, mixing different sized areas in any arrangement. It is the most
general layout statement and can achieve any layout arrangement. You use the LAYOUT OVERLAY statement to
create one graph area with one set of axes. One or more graphs can be added to this area. The graphs are overlaid
and share the same set of axes. You use the LAYOUT LATTICE statement to display multiple graphs that are best
viewed with a common data range along one or more axes, even when the data ranges may be different in the
underlying data. If we view the LAYOUT statements in relation to the graph itself, we get an idea of how the LAYOUT
statements work.

SUGI 30 Tutorials

8

EXPLORING GRAPH TEMPLATE CAPABILITY
What if you needed a persistent change to this graph? Perhaps you want reference lines to delineate the quadrants
every time you run PROC PRINCOMP. This is an easy change to make because it involves adding just two
statements to the graph template for Stat.PrinComp.Graphics.CompScoresPlot. The statements that put
reference lines on the graph are LINEPARM statements. They need to be placed in the LAYOUT OVERLAY block,
above the SCATTERPLOT statement.

When the changed template is executed, ODS goes to the first template store in the ODS search path. In this
program, it is WORK.GRAFTEMP.

DEMO6_REFLINE.SAS Notes
ods path work.graftemp(update)
 sashelp.tmplmst(read);

proc template;
 define statgraph
Stat.PrinComp.Graphics.CompScoresPlot;
 notes "Principal Component Scores Plot";
 dynamic _Title YVAR XVAR;
 layout gridded;
 layout gridded / padbottom=5;
 entrytitle _TITLE;
 endlayout;
 layout overlay / yequated=TRUE
 yaxisopts=(label=YVAR
 display=(label line ticks values))
 xaxisopts=(label=XVAR
 display=(label line ticks values)
 integer=true thresholdmin=1.0 thresholdmax=1.0);
 lineparm xintercept=0 /
 linecolor=GraphReferenceLines:color
 transparency=.5 extreme=true;
 lineparm yintercept=0 /
 linecolor=GraphReferenceLines:color
 transparency=.5 extreme=true;
 scatterplot y=YVAR x=XVAR / tip=(OBSNUM)

The ODS PATH statement
establishes the search order for the
retrieval and storage of templates.

In this PROC TEMPLATE step, we
use the name of the production
template so that the modified version
of the template is stored in
WORK.GRAFTEMP.

The LINEPARM statement must be
contained within a LAYOUT
OVERLAY block. Since the graph
template already had a LAYOUT
OVERLAY statement, this statement
did not need to change.

The LINEPARM statement creates a
straight line with a specified X or Y
intercept. The LINECOLOR value is
pointing to a STYLE template
element. The EXTREME= option is

SUGI 30 Tutorials

9

 markersymbol=CHARACTER
 markersymbolgroup=OBSNUM
 xoffsetmin=0.05 xoffsetmax=0.05
 yoffsetmin=0.05 yoffsetmax=0.05;
 endlayout;
 endlayout;
 end;
run;

ods html path='.' (url=none) gpath='.' (url=none)
 file='princomp_refline.html'
 style=statistical;
ods select PrinCompScoresPlot12;

ods graphics on;

proc princomp data = work.gamblegrp cov std;
title 'Changed Princomp with Reference Lines';
var dsm1-dsm12;
run;

ods graphics off;
ods html close;

being used to specify whether the line
is to be drawn to the area bounded by
the axes.

The ODS HTML statement specifies
the physical location (working
directory) of the output HTML file and
any created graph output files.

When PROC PRINCOMP executes,
ODS looks in WORK.GRAFTEMP for
the modified template.

Output from Changed Template

This example illustrates the power of the graph template language, which enables you to make changes to the
template that persists across invocations of PROC PRINCOMP, as long as the modified template is stored in a
permanent SAS library and the proper ODS PATH statement is issued before PROC PRINCOMP runs. (To return to
the default template that is supplied by SAS in the SASHELP.TMPLMST template store, another ODS PATH

SUGI 30 Tutorials

10

statement must be issued to reset the search path so that only SASHELP.TMPLMST is the first template store in the
search list.)

ADD IDENTIFYING INFORMATION
Other modifications can be performed with the graph template syntax. For example, what if you needed to identify the
data set being plotted, or the study name or a date/time stamp? The graph template syntax has several statements
that can be used to place housekeeping or administrative information like this onto graphical output. Within graph
template syntax, one of the following statements, the ENTRY, ENTRYTITLE, or ENTRYFOOTNOTE statements,
could be used to place housekeeping information onto the graph. One company may have the requirement for the
study and protocol name to be right justified above the title. Another company may have a requirement for creation
date information or data set information to be placed below the main graph area.

In order to make use of the appropriate text statements, we must know how we will pass the housekeeping
information into the graph template. Through the use of the MVAR statement inside the graph template, we can use
SAS macro variable references in the text statements inside our modified template. Information for the macro
variables comes from the following %LET statements:

%let kindstudy = Gambling Behavior Study;
%let protocol = Protocol: XYZ789;
%let create = Created on %sysfunc(today(),mmddyy10.);
%let thisdsn = Dataset: work.gamblegrp;

This is the MVAR statement in the template code:

 mvar kindstudy protocol create thisdsn;

Consider how the macro variables are then used inside the modified graph template:

 entrytitle kindstudy / halign=right;
 entrytitle protocol / halign=right;
 layout gridded / rows=1 border=yes;
 entry create
 / foreground=GraphData3:contrastcolor
 fontfamily=GraphTitleText:font_face
 fontweight=bold
 fontsize=12pt;
 endlayout;
 entry thisdsn / hAlign=left fontsize=10pt
 fontweight=bold;

The full text of the program, demo7_housekeeping, can be downloaded from the URL shown in the appendix to this
paper. The results from the changed program are shown below:

SUGI 30 Tutorials

11

For demonstration purposes, each of the four macro variables was formatted differently:

1. KINDSTUDY: Right justified using the ENTRYTITLE statement. The font weight is bold because the
ENTRYTITLE text is set to bold in the style template.

2. PROTOCOL: Right justified using the ENTRYTITLE statement. As with KINDSTUDY, all the style attributes
come from the style template.

3. CREATE: Uses %SYSFUNC to format the current date. This example was run on 1/22/2005. Because the
creation date is within a LAYOUT GRIDDED statement, the text is centered by default. Style attributes for
the ENTRY statement are specified after the slash (/) in the statement. The style attributes are specified as
name/value pairs separated from each other by a space. Each ENTRY or ENTRYTITLE statement ends
with one semi-colon.

4. THISDSN: Left justified using an ENTRY statement. Style attributes are specified after the slash (/) in the
statement.

Other changes to the graph involve the reference lines. In the original example the reference lines were black,
because the line color was set with the following syntax:
 linecolor=GraphReferenceLines:color

In our style template (style=statistical), the value for the color of the GraphReferenceLines element is black.
However, in this second example, the LINEPARM statement was modified with the following syntax for the
linecolor and linethickness style attributes:

 lineparm xintercept=0 / linecolor=GraphData2:contrastcolor
 linethickness=3px
 transparency=.5
 extreme=true;
 lineparm yintercept=0 / linecolor=GraphData2:contrastcolor
 linethickness=StatGraphFitLine:linethickness
 transparency=.5

SUGI 30 Tutorials

12

 extreme=true;

To understand this syntax, we need to look at two different style elements, the GraphData2 element and the
StatGraphFitLine element.

GraphData2 Style Element StatGraphFitLine Style Element
style GraphData2 from GraphComponent /
 contrastcolor =
GraphColors('gcdata2')
 foreground = GraphColors('gdata2');

style StatGraphFitLine from GraphComponent
/
 transparency = 0.00
 linethickness = 2px
 linestyle = 1
 contrastcolor = GraphColors('gcfit')
 foreground = GraphColors('gfit');

In our syntax, we use an inheritance syntax reference of the form:

attribute = GraphStyleElementName:GraphStyleAttributeName
so that for the LINEPARM statement, the linecolor attribute has the form:

linecolor = GraphData2:contrastcolor
which means that for the LINEPARM statement the linecolor attribute will use the value for contrastcolor
('gcdata2') from the GraphData2 style element. If we had specified 'red' as a color value in the above statement, then
no matter what style template was used, the reference lines would be 'red'. The colors in the style templates have
been designed by visual graphics designers to complement each other. If you run the demonstration program, you
will see that the contrastcolor for the GraphData2 element in STATISTICAL style is light brown ('gcdata2'), but if
you run the program a second time using the JOURNAL style template, you would see that the contrastcolor is
gray. Also of note is the difference between the linethickness attribute values. For the XINTERCEPT line, the
thickness has been set to 3 pixels, but for the YINTERCEPT line, the linethickness attribute comes from the style
template, which has a default value of 2 pixels. If a different style template was created and used, and if the new style
template had a new value for the linethickness attribute of the StatGraphFitLine element, then the syntax shown
above would cause the graph template to inherit that new value for linethickness.

In our example, the two style elements were examined from STYLES.DEFAULT in order to explain how the values
were set in the style template. When an investigation of STYLES.STATISTICAL did not reveal the two style elements
of interest, it was necessary to look for the elements inside STYLES.DEFAULT, which is the parent template for
STYLES.STATISTICAL. It is beyond the scope of this paper to discuss style template inheritance issues, but in short,
when ODS does not find a referenced style element in the style template being used for output, ODS processing
looks in any parent templates for elements and attribute values.

OTHER TEMPLATE MODIFICATIONS
Two other modifications can easily be made to the graph template syntax to achieve other modifications. One
modification is the use of an option to put a grid onto the scatterplot graph. The other modification is the use of the
ELLIPSE statement to show a 95% prediction ellipse on the scatterplot. The full text of the program,
demo8_other_mods.sas, which produced these two modifications can be downloaded from the URL shown in the
appendix to this paper. The first step in the program contains the option for turning on the grid. The second step
contains the ELLIPSE statement:

Example 1: XGRID and YGRID Options Example 2: ELLIPSE Statement
layout overlay /
 xgrid=TRUE ygrid=TRUE . . .;
 <. . more statements . . >
endlayout;

ellipse y=YVAR x=XVAR /
 type = predicted
 confidence = 0.95
 fill = TRUE
 fillcolor = StatGraphConfidence:foreground
 transparency = StatGraphConfidence:transparency;

SUGI 30 Tutorials

13

The first example using the XGRID and YGRID options produces the following output:

The second example in the program produces the prediction ellipse in the following output:

SUGI 30 Tutorials

14

The demonstration program used for this output also creates a custom style template called PrinStyle that changes
some of the style attributes for two style elements, as shown in the code below:

Modified PrinStyle Template
proc template;
 define style styles.PrinStyle;
 parent = Styles.statistical;
 style GraphLabelText from GraphComponent /
 font = GraphFonts('GraphLabelFont')
 foreground = GraphColors('gcdata3');
 style GraphReferenceLines from GraphReferenceLines /
 foreground = GraphColors('gcdata3')
 linestyle = 3
 linethickness = 2px;
 style StatGraphConfidence from StatGraphConfidence /
 transparency = 0.750
 linethickness = 1px
 linestyle = 34
 contrastcolor = GraphColors('gcconfidence')
 foreground = GraphColors('gconfidence');
 end;
run;

Note how the transparency attribute for the ELLIPSE statement inherits this new value of 0.750 as the transparency
value rather than the value of 0.50 from the STYLES.DEFAULT template. In the above instance,
STYLES.STATISTICAL is the immediate parent template for the new style; however, if a style element is not found in
the most immediate parent template, then ODS resolves inheritance by going to the "grandparent" template, which in
this instance is the STYLES.DEFAULT template.

EXAMINE THE STYLE TEMPLATE AND DOCUMENTATION
The same PROC TEMPLATE code that we saw before can be used to reveal the full contents of both templates
involved in the creation of STYLES.PRINSTYLE. In order to construct the PRINSTYLE template, we had to consult
the ODS Graphics documentation to determine which style elements were used for the various parts of the graph
output. Although any SAS-supplied or user-defined style may be used to create ODS Graphics output (as shown in
the above example), four style templates have been specifically designed for use with ODS statistical graphics:
DEFAULT, JOURNAL, ANALYSIS, and STATISTICAL. The documentation is very thorough in outlining the graph
style elements. For more information about the elements and attributes used inside the style template, consult the
Web site http://support.sas.com/rnd/base/topics/statgraph/v91StatGraphStyles.htm, which explains the SAS 9.1 style
elements. For example, the following screen shot from the documentation illustrates which style elements affect
graphical text style elements:

SUGI 30 Tutorials

15

By investigating the documentation, we discovered that the GraphLabelText element was in control of the text labels
for PRIN1 and PRIN2. We modified our style template to use the same color for the GraphLabelText foreground
attribute and the GraphReferenceLines foreground attribute.

USING DATA _NULL_
By default, when PROC PRINCOMP produces scatterplots with ODS Graphics, it produces graphs of PRIN1 v PRIN2
and PRIN1 v PRIN3. A simple ODS SELECT statement (as seen in the demo programs) is all that is needed to
produce these two scatterplots by themselves, without the other PRINCOMP graphs. However, Catherine wanted to
see a comparison of PRIN1 v PRIN2 and PRIN2 v PRIN3. When PROC PRINCOMP creates these two default graph
objects, it sends the appropriate X and Y variables needed by the graph template for each scatterplot. In order to see
different X and Y variables (like PRIN2 v PRIN3), we need to use a DATA _NULL_ program to instruct the graph
template as to which variables from our data set correspond to the X and Y variables needed by the graph template.
One of the most powerful features of ODS Graphics is the ability to invoke a graph template using a DATA _NULL_
program.

However, before we can create a custom graph template to be used with a DATA _NULL_ step, we need to have the
data points to pass to the template. Remember that under most circumstances, you would not need to use a DATA
step program to create ODS Statistical Graphs. Most statistical graphs can be produced without saving data points,
but the fact that we can save our data points and use them with a DATA _NULL_ program illustrates how ODS
Graphics can accommodate everything from simple changes to very stringent and specific graph requirements. Once
we create an output data set from PROC PRINCOMP (using the OUT= option), we can pass our data set variables
into the custom graph template. The DATA _NULL_ step becomes the communication link between the graph
template and the data that we want to see on our version of the scatterplot.

USING DYNAMIC VARIABLES WITH DATA _NULL_
For a more complete description of how graph templates work, consult the SAS/STAT documentation for the
supported procedures and see the chapter “Statistical Graphics Using ODS—Experimental” in the SAS/STAT 9.1
User's Guide. The reference section at the end of this paper points you to several very thorough explanations of
graph templates written by Jeff Cartier. Since the syntax may change when the ODS Statistical Graphics feature
becomes production, we are not going to focus on a statement-by-statement explanation of the syntax. However, we
will show you enough to get you started with your own experimentation efforts. Keep in mind that the approach
presented in this section should be considered highly experimental. Please do not use these methods for production
work, but rather to explore the ways that you can modify graph templates.

Consider the DYNAMIC statement in the original template source code:
 dynamic _Title YVAR XVAR;

SUGI 30 Tutorials

16

In our DATA _NULL_ program, we will send data set variable information to the graph template DYNAMIC variables.
The changed text of our template and the full text of the corresponding DATA _NULL_ that invokes it are shown
below:

Partial TEMPLATE Code for DATA _NULL_ Program That Supplies DYNAMIC Values
proc template;
 define statgraph Stat.PrinComp.Graphics.DataScatter;
 notes "Principal Component Scores Plot with DATA _NULL_";
 mvar kindstudy protocol thisdsn;
 dynamic _Title YVAR XVAR OBSNUM;
 layout gridded;
 <. . . statements for titles . . .>
 endlayout;
 layout overlay / xgrid=true ygrid=true
 yequated=TRUE
 yaxisopts=(label=YVAR
 display=(label line ticks values))
 xaxisopts=(label=XVAR
 display=(label line ticks values)
 integer=true thresholdmin=1.0 thresholdmax=1.0);
 <. . . LINEPARM statements. . . >
 scatterplot y=YVAR x=XVAR / tip=(OBSNUM)
 markersymbol=CHARACTER
 markersymbolgroup=OBSNUM
 xoffsetmin=0.05 xoffsetmax=0.05
 yoffsetmin=0.05 yoffsetmax=0.05;
 endlayout;
 <. . . rest of graph template code . . .>
run;
The changes to the graph template were minimal, but we did incorporate the use of some of the housekeeping
examples as well as the reference line example. We added OBSNUM as a dynamic variable so that we could
activate tool tips for both graphs. OBSNUM is being used in our graph template for the tool tip that pops open in ODS
HTML output when you hover the mouse over the center of a data point. OBSNUM is also used as the marker
symbol for the scatterplot as well. It is useful to have OBSNUM as the marker and as the tool tip if many data points
overlap. The data values are centered around the marker positions in both the X and Y directions. The marker
symbol positions are not adjusted to prevent overlap, so tool tips can help to identify overlapping observation numbers
or overlapping symbols, if observation numbers are not used. To activate the tool tips, you must create ODS HTML
output and specify the IMAGEFMT=STATICMAP option in the ODS GRAPHICS ON statement.

The DATA _NULL_ program is doing the work based on the data set that was created with PROC PRINCOMP. Note
how the FILE PRINT ODS statement supplies all the information for the DYNAMIC statement for each graph. In a
production environment, you might consider writing a SAS Macro program and invoking the DATA _NULL_ from
within a macro program that provided all the variable information (including the X and Y variables) as macro variable
values. The following DATA _NULL_ code is from the demonstration program demo9_datanull.sas. The code
shown produces the PRIN2 v PRIN3 plot, but in the full text of the demo program, you can see that it also produces
the PRIN1 v PRIN2 plot as well.

DATA _NULL_ Code for PRIN2 v PRIN3 Graph

%let kindstudy = Gambling Behavior Study;
%let protocol = Protocol: XYZ789;
%let thisdsn = Dataset: work.gambleout;
proc princomp data = work.gamblegrp out=gambleout n=5 cov std;
title 'Output Data set Created From PROC PRINCOMP';
run;

ods html path='.' (url=none)
 gpath='.' (url=none)
 file='princomp_data_null.html'
 style=statistical;

** Use Data _NULL_ to plot Prin1 v Prin2 and Prin2 v Prin3;
** with same revised graph template;
ods graphics on / imagefmt=staticmap;
title "Scatter Plot Created With DATA _NULL_";

< . . .code for PRIN1 v PRIN2 . . .>
< . . .followed by code for PRIN2 v PRIN3 . . .>

SUGI 30 Tutorials

17

data _null_;
 set gambleout;
 OBSNUM = _N_;
 file print ods=(template="Stat.PrinComp.Graphics.DataScatter"
 dynamic=(_Title="Second v Third Principal Component Scores"
 XVAR="prin2"
 YVAR="prin3"
 OBSNUM="OBSNUM"));
 put _ods_;
run;
ods graphics off;
ods html close;

We gave our modified graph template a unique name, Stat.PrinComp.Graphics.DataScatter, to ensure that the
graph template would not accidentally be used if PROC PRINCOMP were invoked using other data. In a production
environment, if you were designing highly customized graph templates, you might want to invoke the graph using a
DATA _NULL_ program using a unique graph template name that reflected the intended purpose of the graph. As
you can see in the above code, the TEMPLATE= option of the FILE PRINT ODS statement enables you to point to a
graph template in the same fashion that you use the statement to point to a TABLE template. The output for PRIN2 v
PRIN3 is shown below:

CUSTOM GRAPH PLACEMENT
Our last modification to the output involves a demonstration of the ability to achieve custom placement of graphics
output. What would be helpful for our analysis of the gambling data would be to show the PRIN1 v PRIN2 and PRIN2
v PRIN3 graphs side by side rather than one on top of the other in the output (as shown previously). To achieve this
custom graph placement, we need to define all the layout areas on the output area. In this last example, we will look
at the output first and then investigate the code.

SUGI 30 Tutorials

18

Again, we have used macro variables to provide housekeeping information on the graph template. In addition, we
have used some special features of ODS to place the SUGI logo onto the HTML page. But of primary interest is the
fact that we have placed the two graphs side by side. We achieved this by specifying a LAYOUT GRIDDED block
that surrounded one LAYOUT block for the PRIN1 v PRIN2 graph and another LAYOUT block for the PRIN2 v PRIN3
graph. The general syntax for the new graph template follows this model:

Model for Side by Side Graphs
proc template;
 define statgraph Stat.PrinComp.Graphics.FirstThree;

 LAYOUT Statement to enclose whole graph template
 LAYOUT Statement to define 2 columns (one for each graph)

 LAYOUT Block for PRIN1 v PRIN2
 ENDLAYOUT for PRIN1 v PRIN2

 LAYOUT Block for PRIN2 v PRIN3
 ENDLAYOUT for PRIN2 v PRIN3

 ENDLAYOUT for 2 columns;
 ENDLAYOUT for whole graph template;
end;
run;

If we superimpose the LAYOUT statements on top of the output, we would be able to see exactly where the various
ENTRY and ENTRYTITLE statements would have to be placed in order to be inside the entire graph area, but outside
the side-by-side graph area.

SUGI 30 Tutorials

19

This conceptual look at the graph output and the model syntax together indicates that the housekeeping text
statements (for macro variables KINDSTUDY, PROTOCOL, and THISDSN) are interspersed between the various
LAYOUT statements. The full text of the program, demo10_datanull_sidebyside.sas, can be downloaded from the
Web site http://support.sas.com/rnd/papers/index.html.

If you compare the output for PRIN2 v PRIN3 in the above output with the output from the previous program, you will
note that the default output graph for PRIN2 v PRIN3 was rectangular in shape (without the COV and STD options).
In our program, we used the explicit TICKS= option for each graph's X and Y axis:
 ticks = (-3 -2 -1 0 1 2 3)
This ensures that both graphs are the same shape and have the same tick mark values.

In addition, if you examine our graph template, you will see that we hard-coded the X and Y values for each graph so
that it was clear which graph layout block produced PRIN1 v PRIN2 analysis and which graph layout block produced
the PRIN2 v PRIN3 graph.
Partial Layout Block for PRIN1 v PRIN2 Partial Layout Block for PRIN2 v PRIN3
layout overlay / padleft=5
 xgrid=TRUE ygrid=TRUE yequated=TRUE
 yaxisopts=(label=PRIN1
 ticks = (-3 -2 -1 0 1 2 3)
 display=(label line ticks values))
 xaxisopts=(label=PRIN2
 ticks = (-3 -2 -1 0 1 2 3)
 display=(label line ticks values)
 integer=true thresholdmin=1.0
 thresholdmax=1.0);
 <. . . LINEPARM statements . . .>
 scatterplot y=PRIN1 x=PRIN2/
 tip=(TIP_L)
 markersymbol=CHARACTER
 markersymbolgroup=OBSNUM_L
 <. rest of scatterplot statements .>;
endlayout;

layout overlay / padleft=5
 xgrid=TRUE ygrid=TRUE yequated=TRUE
 yaxisopts=(label=PRIN2
 ticks = (-3 -2 -1 0 1 2 3)
 display=(label line ticks values))
 xaxisopts=(label=PRIN3
 ticks = (-3 -2 -1 0 1 2 3)
 display=(label line ticks values)
 integer=true thresholdmin=1.0
 thresholdmax=1.0);
 <. . . LINEPARM statements . . .>
 scatterplot y=PRIN2 x=PRIN3/
 tip=(TIP_R)
 markersymbol=CHARACTER
 markersymbolgroup=OBSNUM_R
 <. rest of scatterplot statements .>;
endlayout;

SUGI 30 Tutorials

20

We did use some DYNAMIC variables for our graphs. We specified OBSNUM_L for the left-hand side graph
markersymbols (PRIN1 v PRIN2) and OBSNUM_R for the right-hand side graph markersymbols (PRIN2 v
PRIN3). Then we used a different dynamic variable for the tool tips. However, in a production situation, you would
probably use a dot or a diamond for the marker symbol and the observation number for the tool tip, especially in
situations where you had more observations or there was a great deal of overlapping observations.

When we invoked the new template with a DATA _NULL_ program, we only needed one program to produce both
graphs, as shown above. This was possible because the graph template contained a LAYOUT block for each graph.

DATA _NULL_ Program to Create Side-by-Side Graphs
ods html path='.' (url=none)
 gpath='.' (url=none)
 file='princomp_sidebyside.html'
 style=statistical;
ods graphics on / imagefmt=staticmap;
ods escapechar='~';

title j=l "~S={preimage='sugi30_logo.gif'} "
 j=c "Analysis~_of~_First~_Three~_Principal~_Components"
 "~nFrom DATA _NULL_ Program";

data _null_;
 set gambleout(keep=GTYPE prin1 prin2 prin3);
 OBSNUM1 = _N_;
 OBSNUM = _N_;
 GTYPE_R = GTYPE;
 GTYPE_L = GTYPE;
 file print ods=(template="Stat.PrinComp.Graphics.FirstThree"
 dynamic=(TIP_L="GTYPE"
 TIP_R="GTYPE_R"
 OBSNUM_L="OBSNUM"
 OBSNUM_R="OBSNUM1"));
 put _ods_;
 label gtype = 'Cat'
 gtype_r = 'Cat';
run;
ods graphics off;

ods html close;
The ODS ESCAPECHAR statement is used to place an S= option into the SAS TITLE statement so that the SUGI
logo could be placed on the left of the first title statement. The ODS ESCAPECHAR is a user-defined character, in
this case a tilde (~), that allows you to insert style information or special characters into the SAS output. In our
example, the special escape string, '~_' (tilde underscore) is translated to be a nonbreaking space entity in the HTML
output (). In addition, the ESCAPECHAR string '~n' (tilde n) is used to place a line break into the SAS TITLE
string. For HTML output, the ~n is translated to
 in the HTML output file. Note that if the ODS ESCAPECHAR
statement had specified a different escape character, perhaps a caret (^), then the usage would have been '^S=', '^_',
and '^n' instead of what is shown. When you use ODS ESCAPECHAR, the defined escape character must match the
escape character used in the SAS code. So ODS ESCAPECHAR usage causes this SAS TITLE statement
ods escapechar='~';

title j=l "~S={preimage='sugi30_logo.gif'} "
 j=c "Analysis~_of~_First~_Three~_Principal~_Components"
 "~nFrom DATA _NULL_ Program";

to get translated to this HTML code,
<table class="SysTitleAndFooterContainer" width="100%" cellspacing="1"
cellpadding="1" rules="none" frame="void" border="0" summary="Page Layout">
<tr>
<td class=" SystemTitle" style=" width: 33%;">

</td>
<td class="c SystemTitle" colspan="2" style=" width: 34%;">
Analysis of First Three Principal Components

From DATA _NULL_ Program
</td>
<td class="c SystemTitle" style=" width: 33%;"> </td>
</tr>
</table>

SUGI 30 Tutorials

21

in the HTML output file. We used the nonbreaking space escape character to cause the entire title to be treated as
one continuous string. And we used the pre-image style attribute to cause the SUGI logo GIF file to be used in the
 tag. Note how the pre-image style attribute uses a simple filename and extension. This is called a 'relative'
reference for the SRC= option. For this technique to work, the GIF file and the HTML file must be placed in the same
directory on your local machine or on your Web server.

You can gain more knowledge about style templates, table templates, and ODS ESCAPECHAR from the Education
Division class "Advanced Output Delivery System Topics," which is available as either classroom training or as Live
Web training. Currently, this class does not cover ODS Graphics topics. In the future, if demand warrants, we will
develop training on ODS Graphics subjects. However, we hope that we have shown that usage of ODS Graphics
spans a continuum from very easy, with no extra code except ODS GRAPHICS ON/OFF statements, to extremely
customized, through the use of graph template syntax and style template syntax, along with DATA _NULL_
programming and other ODS components.

CONCLUSION
In conclusion, we'd like to enthusiastically reiterate our earlier statement that ODS statistical graphics capability
represents an exciting new feature of SAS®9. With ODS Graphics, analytical procedures in SAS can create
professional-quality graphics either automatically or with a minimal number of options. The automatic graphs
generated are sufficient for most data analytic situations, in which case the templates will not need modification.
However, if you do need to make persistent graph changes, we hope that our exploration of the interactions between
the graph templates, style templates, and other ODS components will make your job easier.

ACKNOWLEDGMENTS
The authors would like to thank Michele Ensor, Jeff Cartier, Sanjay Matange, Tonya Balan, Bob Rodriguez, and the
rest of the data visualization group for their help and suggestions on how to improve this paper.

REFERENCES
For more information about Graph Templates and Graph Template Language, consult the ODS documentation at the
Web site http://support.sas.com/91doc/getDoc/statug.hlp/odsgraph_sect23.htm. In addition, these papers were very
useful for research into the behavior of Graph templates:

Proceedings of the Annual Conference of the SAS Users Group International. Cary, NC: SAS Institute Inc.
Cartier, J.: "Graphs In Style" (SUGI 29).
Cartier, J.: "It's All in the Presentation" (SUGI 28).
Rodriguez, R. “An Introduction to ODS for Statistical Graphics in SAS 9.1” (SUGI 29).
Other papers:
Cartier, J.: "Visual Styles for V9 SAS Output." <http://support.sas.com/rnd/datavisualization/papers/VisualStyles.pdf>.
Okerson, B.: "Evaluating Hospital Performance: Using SAS ODS to Create a Hospital Scorecard."
<http://www2.sas.com/proceedings/sugi29/157-29.pdf>.

APPENDIX
The ODS Graphics programs provided here are coded using the experimental syntax specific to SAS 9.1.3 ODS
Graphics features. These programs are provided "as is" and are not intended to be used in a production
environment. They are provided for experimentation and learning purposes only. Please note that the syntax for
Graph templates will change in a future release and the syntax shown in these programs may no longer be valid.

PROGRAM: DEMO2_ODSGRAF.SAS PROGRAM: DEMO4_SELECT.SAS
options nodate pageno=1;
ods listing close;

** PROC PRINCOMP and the;
** default ODS output. ;

ods path sashelp.tmplmst(read);
ods html path='.' (url=none)
 gpath='.' (url=none)
 file='princomp_default.html'
 style=statistical;
ods graphics on / imagefmt=staticmap;

proc princomp data = work.gamblegrp
 cov std;
title 'Default PRINCOMP Output';

options nodate pageno=1;
ods listing close;

** PROC PRINCOMP and the;
** default ODS output. ;
** Using ODS SELECT to get;
** PRIN1 v PRIN2 and
** PRIN1 v PRIN3;

ods path sashelp.tmplmst(read);
ods html path='.' (url=none)
 gpath='.' (url=none)
 file='princomp_select.html'
 style=statistical;
ods select PrinCompScoresPlot12
 PrinCompScoresPlot13;

SUGI 30 Tutorials

22

var dsm1-dsm12;
run;

ods graphics off;
ods html close;
title;

ods graphics on / imagefmt=staticmap;

proc princomp data = work.gamblegrp
 cov std;
title 'Default PRINCOMP Output + SELECT';
var dsm1-dsm12;
run;

ods graphics off;
ods html close;

NOTE
Because the remaining program samples are lengthy, they are available for download as a Zip file from the following
Web site: http://support.sas.com/rnd/papers/index.html .

Alternately, if you are unable to download Zip files, but can receive Zip files as e-mail attachments, you may e-mail
the authors after the SUGI conference to have the program files for this paper e-mailed to you.

CONTACT INFORMATION
Contact the authors at

Catherine Truxillo
SAS Institute
SAS Campus Drive
Cary, NC 27513
919-531-4641
Catherine.Truxillo@sas.com

Cynthia Zender
SAS Institute
Denver, CO
303-290-9112 ext 1738

Cynthia.Zender@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are
trademarks of their respective companies.

SUGI 30 Tutorials

	SUGI 30 Proceedings Table of Contents

