
1

Paper 242-30

Arrays Made Easy: An Introduction to Arrays and Array Processing
Steve First and Teresa Schudrowitz, Systems Seminar Consultants, Inc., Madison, WI

ABSTRACT

Many programmers often find the thought of using arrays in their programs to be a daunting task, and as a result they
often shy away from arrays in their code in favor of better-understood, but more complex solutions. A SAS array is a
convenient way of temporarily identifying a group of variables for processing within a data step. Once the array has
been defined the programmer is now able to perform the same tasks for a series of related variables, the array
elements. Once the basics of array processing are understood arrays are a simple solution to many program
scenarios.

Throughout this paper we will review the following array topics:

1) Why do we need arrays?
2) Basic array concepts

a) Definition
b) Elements
c) Syntax
d) Rules

3) Using array indexes
4) One dimension arrays
5) Multi-dimension arrays
6) Temporary arrays
7) Explicit vs. implicit subscripting
8) Sorting arrays
9) When to use arrays
10) Common errors and misunderstandings

INTRODUCTION

Most mathematical and computer languages have some notation for repeating or other related values. These
repeated structures are often called a matrix, a vector, a dimension, a table, or in the SAS data step, this structure is
called an array. While every memory address in a computer is an array of sorts, the SAS definition is a group of
related variables that are already defined in a data step. Some differences between SAS arrays and those of other
languages are that SAS array elements don’t need to be contiguous, the same length, or even related at all. All
elements must be character or numeric.

WHY DO WE NEED ARRAYS?

The use of arrays may allow us to simplify our processing. We can use arrays to help read and analyze repetitive
data with a minimum of coding.

An array and a loop can make the program smaller. For example, suppose we have a file where each record contains
24 values with the temperatures for each hour of the day. These temperatures are in Fahrenheit and we need to
convert them to 24 Celsius values. Without arrays we need to repeat the same calculation for all 24 temperature
variables:

data;
 input etc.
 celsius_temp1 = 5/9(temp1 – 32);
 celsius_temp2 = 5/9(temp2 – 32);
 . . .
 celsius_temp24 = 5/9(temp24 – 32);
run;

SUGI 30 Tutorials

2

An alternative is to define arrays and use a loop to process the calculation for all variables:

data;
 input etc.
 array temperature_array {24} temp1-temp24;
 array celsius_array {24} celsius_temp1-celsius_temp24;
 do i = 1 to 24;
 celsius_array{i} = 5/9(temperature_array{i} – 32);
 end;
run;

While in this example there are only 24 elements in each array, it would work just as well with hundreds of elements.
In addition to simplifying the calculations, by defining arrays for the temperature values we could also have used them
in the input statement to simplify the input process. It should also be noted, while TEMP1 is equivalent to the first
element, TEMP2 to the second etc., the variables do not need to be named consecutively. The array would work just
as well with non-consecutive variable names.

array sample_array {5} x a i r d;

In this example, the variable x is equivalent to the first element, a to the second etc.

Arrays may also be used to provide table lookups. For instance, we have different percentage rates that will be
applied to a representative’s sales amounts to determine their commission. The percentage amount may be stored
within an array structure, and then the array could provide a location to look up the appropriate percentage for
inclusion in the commission calculation.

BASIC ARRAY CONCEPTS

Arrays within SAS are different than arrays in other languages. SAS arrays are another way to temporarily group and
refer to SAS variables. A SAS array is not a new data structure, the array name is not a variable, and arrays do not
define additional variables. Rather, a SAS array provides a different name to reference a group of variables.

The ARRAY statement defines variables to be processed as a group. The variables referenced by the array are
called elements. Once an array is defined, the array name and an index reference the elements of the array. Since
similar processing is generally completed on the array elements, references to the array are usually found within DO
groups.

ARRAY STATEMENT

The statement used to define an array is the ARRAY statement.

array array-name {n} <$> <length> array-elements <(initial-values)>;

The ARRAY statement is a compiler statement within the data step. In addition, the array elements cannot be used
in compiler statements such as DROP or KEEP. An array must be defined within the data step prior to being
referenced and if an array is referenced without first being defined, an error will occur. Defining an array within one
data step and referencing the array within another data step will also cause errors, because arrays exist only for the
duration of the data step in which they are defined. Therefore, it is necessary to define an array within every data
step where the array will be referenced

The ARRAY statements provides the following information about the SAS array:
♦ array-name – Any valid SAS name
♦ n – Number of elements within the array
♦ $ - Indicates the elements within the array are character type variables
♦ length – A common length for the array elements
♦ elements – List of SAS variables to be part of the array
♦ initial values – Provides the initial values for each of the array elements

The array name will be used as part of the array reference when the array elements are used in processing. The
name must follow the same rules as variable names, therefore, any valid SAS name is a valid array name. When
naming an array it is best to avoid using an array name that is the same as a function name to avoid confusion.
While parentheses or square brackets can be used when referencing array elements, the braces {} are used most
often since they are not used in other SAS statements. SAS does place one restriction on the name of the array.
The array name may not be the same name as any variable on the SAS data set.

SUGI 30 Tutorials

3

The elements for an array must be all numeric or all character. When the elements are character it is necessary to
indicate this at the time the array is defined by including the dollar sign ($) on the array statement after the reference
to the number of elements. If the dollar sign is not included on the array statement, the array is assumed to be
numeric.

When all numeric or all character variables in the data set are to be elements within the array, there are several
special variables that may used instead of listing the individual variables as elements. The special variables are:

NUMERIC - when all the numeric variables will be used as elements
CHARACTER - when all the character variables will be used as elements
ALL - when all variables on the data set will be used as elements and the variables are all

the same type

N is the array subscript in the array definition and it refers to the number of elements within the array. A numeric
constant, a variable whose value is a number, a numeric SAS expression, or an asterisk (*) may be used as the
subscript. The subscript must be enclosed within braces {}, square brackets [], or parentheses (). In our temperature
example the subscript will be 24 for each of the 24 temperature variables:

array temperature_array {24} temp1 – temp24;

When the asterisk is used, it is not necessary to know how many elements are contained within the array. SAS will
count the number of elements for you. An example of using the asterisk is when one of the special variables defines
the elements.

array allnums {*} _numeric_;

When it is necessary to know how many elements are in the array, the DIM function can be used to return the count
of elements.

do i = 1 to dim(allnums);
 allnums{i} = round(allnums{i},.1);
end;

In this example, when the array ALLNUMS is defined, SAS will count the number of numeric variables used as
elements of the array. Then, in the DO group processing, the DIM function will return the count value as the ending
range for the loop.

ARRAY REFERENCES

When an array is defined with the ARRAY statement SAS creates an array reference. The array reference is in the
following form:

array-name{n}

The value of n will be the element’s position within the array. For example, in the temperature array defined above
the temperature for 1:00 PM is in the variable TEMP13. The array element has been assigned the 13th position within
the array. Therefore, the array reference will be:

temperature_array{13}

 The variable name and the array reference are interchangeable. When an array has been defined in a data step
either the variable name or the array reference may be used.

Variable Name Array Reference
temp1 temperature_array{1}
temp2 temperature_array{2}
temp3 temperature_array{3}
temp4 temperature_array{4}
temp5 temperature_array{5}

An array reference may be used within the data step in almost any place other SAS variables may be used including
as an argument to many SAS functions. If the data step does not have an ARRAY statement to define the array and
create the array reference, errors will occur. When an array is referenced within a data step, it must be defined with
an ARRAY statement in the same data step.

SUGI 30 Tutorials

4

USING ARRAY INDEXES

The array index is the range of array elements. In our temperature example, we are looking at temperatures for each
of the 24 hours of the day. The array is defined as:

array temperature_array {24} temp1 – temp24;

Another variation in SAS arrays from arrays within other languages is, subscripts are 1-based by default where arrays
in other languages may be 0-based. When we set the array bounds with the subscript and only specify the number of
elements within the array as our upper bound, the lower bound is the default value of 1. In our example, the index
begins with the lower bound of 1 and ends with the upper bound of 24.

There may be scenarios when we want the index to begin at a lower bound other than 1. This is possible by
modifying the subscript value when the array is defined. For this example we are using our same temperature
variables. Only this time we only want the temperatures for the daytime, temperatures 6 through 18. In this example
the array is defined as:

array temperature_array {6:18} temp6 – temp18;

The subscript will be written as the lower bound and upper bound of the range, separated by a colon.
This technique can simplify array usage by using natural values for the index. Examples of this might be to use a
person’s age, or to use a year value to get to the correct element.

ONE DIMENSION ARRAYS

A simple array may be created when the variables grouped together conceptually appear as a single row. This is
known as a one-dimensional array. Within the Program Data Vector the variable structure may be visualized as:

temperature_array {1} {2} {3} {4} {5} … {24}
Temperature Variables temp1 Temp2 temp3 temp4 temp5 … temp24

The array statement to define this one-dimensional array will be:

array temperature_array {24} temp1 – temp24;

The array has 24 elements for the variables TEMP1 through TEMP24. When the array elements are used within the
data step the array name and the element number will reference them. The reference to the ninth element in the
temperature array is:

temperature_array{9}

MULTI-DIMENSION ARRAYS

A more complex array may be created in the form of a multi-dimensional array. Multi-dimensional arrays may be
created in two or more dimensions. Conceptually, a two-dimensional array appears as a table with rows and
columns. Within the Program Data Vector the variable structure may be visualized as:

2nd Dimension SALE_ARRAY {r,1} {r,2} {r,3} {r,4} … {r,12}
Sales
Variables

{1,c} SALES1 SALES2 SALES3 SALES4 … SALES12

Expense
Variables

{2,c} EXP1 EXP2 EXP3 EXP4 … EXP12

1st Dimension

Commission
Variables

{3,c} COMM1 COMM2 COMM3 COMM4 … COMM12

The array statement to define this two-dimensional array will be:

array sale_array {3, 12} sales1-sales12 exp1-exp12 comm1-comm12;

The array contains three sets of twelve elements. When the array is defined the number of elements indicates the
number of rows (first dimension), and the number of columns (second dimension). The first dimension of the array is
the three sets of variable groups: sales, expense, and commission. The second dimension is the 12 values within the

SUGI 30 Tutorials

5

group. When the array elements of a multi-dimensional array are used within the data step the array name and the
element number for both dimensions will reference them. The reference to the sixth element for the expense group in
the sales array is:

sale_array{2,6}

Three and more dimensions can be defined as well. It should be noted that if a PROC PRINT is run, only the actual
variable names are displayed instead of the array elements, so it can sometimes be difficult to visualize the logical
structure.

TEMPORARY ARRAYS

A temporary array is an array that only exists for the duration of the data step where it is defined. A temporary array
is useful for storing constant values, which are used in calculations. In a temporary array there are no corresponding
variables to identify the array elements. The elements are defined by the key word _TEMPORARY_.

When the key word _TEMPORARY_ is used, a list of temporary data elements is created is created in the Program
Data Vector. These elements exist only in the Program Data Vector and are similar to pseudo-variables.

array {1} {2} {3} {4} {5} {6}
Variables
Values 0.05 0.08 0.12 0.20 0.27 0.35

One method of setting the values for a temporary array’s elements is to indicate initial values in the ARRAY
statement. Therefore, a temporary array of rate values might be defined as follows:

array rate {6} _temporary_ (0.05 0.08 0.12 0.20 0.27 0.35);

The values for the temporary data elements are automatically retained across iterations of the data step, but do not
appear in the output data sets. With a few exceptions, temporary data elements behave in a manner similar to
variables. Temporary data elements do not have names, therefore they may only be referenced using the array
reference. The asterisk subscript cannot be used when defining a temporary array and explicit array bounds must be
specified for temporary arrays.

We are now able to apply the constant values defined in the array. For example: when a customer is delinquent in
payment of their account balance, a penalty is applied. The amount of the penalty depends upon the number of
months that the account is delinquent. Without array processing this IF-THEN processing would be required to
complete the calculation:

if month_delinquent eq 1 then balance = balance + (balance * 0.05);
else if month_delinquent eq 2 then balance = balance + (balance * 0.08);
else if month_delinquent eq 3 then balance = balance + (balance * 0.12);
else if month_delinquent eq 4 then balance = balance + (balance * 0.20);
else if month_delinquent eq 5 then balance = balance + (balance * 0.27);
else if month_delinquent eq 6 then balance = balance + (balance * 0.35);

By placing the penalty amounts into a temporary array, the code for calculating the new balance can be simplified.
The penalty amounts have been stored in the temporary array RATE. The new account balance with the penalty can
now be calculated as:

array rate {6} _temporary_ (0.05 0.08 0.12 0.20 0.27 0.35);
if month_delinquent ge 1 and month_delinquent le 6 then
 balance = balance + (balance * rate{month_delinquent});

In addition to simplifying the code, the use of the temporary array also improves performance time.

Setting initial values is not required on the ARRAY statement. The values within a temporary array may be set in
another manner within the data step.

array rateb {6} _temporary_;
do i = 1 to 6;
 rateb{i} = i * 0.5;
end;

SUGI 30 Tutorials

6

EXPLICIT VS IMPLICIT SUBSCRIPTING

Earlier versions of SAS originally defined arrays in a more implicit manner as follows:

array array-name<(index-variable)> <$> <length> array-elements <(initial-values)>;

In an implicit array, an index variable may be indicated after the array name. This differs from the explicit array
previously discussed where a constant value or an asterisk, as the subscript, denotes the array bounds. When an
implicit array is defined, processing for every element in the array may be completed with a DO-OVER statement.
The variable specified as the index variable is tied to the array and should only be used as the array index.

Example:

array item(j) $ 12 x1-x12;
do over item;
 put item;
end;

When referencing the array, only the array name is specified. Thus, the implied notation, instead of the more explicit
mode described earlier. If a program needed to reference by index-variable, that can also be done, but must be
specified in a separate statement.

array item(j) $ 12 x1-x12;
do j=1 to 12;
 put item;
end;

Because of the difficulty understanding the more cryptic implicit arrays, explicit arrays are recommended. Implicit
array support was left in SAS only to insure older programs would continue to run.

SORTING ARRAYS

There are several new experimental call routines in SAS 9.1 that can be used to sort across a series of variables.
SORTN can be used to sort numeric variables and SORTQ for character fields. An example of sorting several
numeric variables is as follows:

data _null_;
 array xarry{6} x1-x6;
 set ds1;
 call sortn(of x1-x6);
run;

When an observation from ds1 is processed the values brought into the Program Data Vector appear as follows:

xarry {1} {2} {3} {4} {5} {6}
Variables x1 x2 x3 x4 x5 x6
Values 0.27 0.12 0.20 0.08 0.35 0.05

The SORTN call routine will sort the values of the variables in ascending order and replace the Program Data Vector
values with the new sorted values. Thus, after the call routine the Program Data Vector will appear as follows:

xarry {1} {2} {3} {4} {5} {6}
Variables x1 x2 x3 x4 x5 x6
Values 0.05 0.08 0.12 0.20 0.27 0.35

Because the values for the variables are now different the value selected by the array reference will be affected. For
instance, to calculate rate we must add the value in the array reference to 0.75 as follows:

rate = 0.75 + xarry{i};

If the calculation is completed prior to the SORTN call routine and i is equal to 3, rate would be 0.95. On the other
hand, if the same calculation were to be completed after the call routine, rate would be 0.87.

SUGI 30 Tutorials

7

WHEN TO USE ARRAYS

It makes sense to use arrays when there are repetitive values that are related and the programmer needs to iterate
though most of them. The combination of arrays and do loops in the data step lend incredible power to programming.
The fact that the variables in the array do not need to be related or even contiguous makes them even more
convenient to use.

COMMON ERRORS AND MISUNDERSTANDINGS

Common errors and misunderstandings occur in array processing. This section will review several of these and how
they are resolved.

INVALID INDEX RANGE

In the processing of array references, it is easy to use an index value from outside the array bounds. A typical
instance when this occurs is while looping through the array references with DO group processing.

data dailytemp;
 set tempdata;
 array temperature_array {24} temp1-temp24;
 array celsius_array {24} celsius_temp1-celsius_temp24;
 do until (i gt 24);
 i = 1;
 celsius_array{i} = 5 / 9 * (temperature_array{i} – 31);
 end;
 i=0;
 drop i;
run;

In the scenario a DO-UNTIL loop is used to process the 24 different temperatures. When a DO-UNTIL loop is
processed the evaluation of the expression is not completed until the bottom of the loop. After processing for i equal
to 24, the expression is still true. Therefore, processing remains within the loop and i will be incremented to 25. Both
arrays used in the calculation were defined with only 24 elements. An index value of 25 is greater than the array’s
upper bound. As a result, the data error message “Array subscript out of range” will be received.

There are two possible resolutions to this scenario. One possibility is to continue using the DO-UNTIL loop, but
change the expression to check for I greater than 23:

do until (i gt 23);
 i = 1;
 celsius_array{i} = 5 / 9 * (temperature_array{i} – 31);
end;

Another possibility is to modify the loop to DO-WHILE processing. A DO-WHILE loop evaluates the expression first
and if the expression is true the processing within the loop will continue. Therefore, the modified code for using a
DO-WHILE loop would be:

do while (i le 24);
 i = 1;
 celsius_array{i} = 5 / 9 * (temperature_array{i} – 31);
end;

FUNCTION NAME AS AN ARRAY NAME

The use of a function name as an array name on the ARRAY statement may cause unpredictable results. If a
function name is used as an array name, SAS will no longer recognize the name as a function name. Therefore,
rather than seeing parenthetical values as function arguments, SAS now sees those values as the index value for an
array reference.

When a function name is used to define an array name SAS will provide a warning in the log. If the function is then
used within the data step error messages may be received as result of SAS attempting to interpret the function
arguments as an array reference.

SUGI 30 Tutorials

8

8 data dailytemp;
9 set tempdata;
10 array mean {24} temp1-temp24;
WARNING: An array is being defined with the same name as a SAS-supplied or user-
defined function. Parenthesized references involving this name will be treated as
array references and not function references.
11 do i = 1 to 24;
12 meantemp = mean(of temp1-temp24);
ERROR: Too many array subscripts specified for array MEAN.
13 end;
14 run;
15

Avoiding function names as array names is a simple resolution in this scenario.

ARRAY REFERENCED IN MULTIPLE DATA STEPS, BUT DEFINED IN ONLY ONE

Every data step where an array is referenced it must be defined within the step with an ARRAY statement. A sample
program contains the following data steps:

data dailytemp;
 set tempdata;
 array temperature_array {24} temp1-temp24;
 array celsius_array {24} celsius_temp1-celsius_temp24;
 do i = 1 to 24;
 celsius_array{i} = 5 / 9 * (temperature_array{i} – 31);
 end;
run;

data celsius;
 set dailytemp;
 do i = 1 to 24;
 if celsius_array{i} lt 0 then tempdesc = ‘below freezing’;
 else if celsius_array{i} gt o then tempdesc = ‘above freezing’;
 end;
run;

The first data step contains the definition of the array CELSIUS_ARRAY on the second ARRAY statement.
References to the array do not cause any issues. The second data step has two references to the array but the array
has not been defined within this data step.

The resolution to this issue requires the inclusion of the ARRAY statement to define the array within every data step
where it is referenced. Therefore, the second data step would be modified as follows:

data celsius;
 set dailytemp;
 array celsius_array {24} celsius_temp1-celsius_temp24;
 do i = 1 to 24;
 if celsius_array{i} lt 0 then tempdesc = ‘below freezing’;
 else if celsius_array{i} gt o then tempdesc = ‘above freezing’;
 end;
run;

CONCLUSION

Arrays are not a mystery, but a wonderful tool for Data step programmers that need to reference repetitive values.

SUGI 30 Tutorials

9

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Steve First
Systems Seminar Consultants, Inc.
2997 Yarmouth Greenway Dr
Madison, WI 53711
Work Phone: (608) 279-9964 x302
Fax: (608) 278-0065
Email: sfirst@sys-seminar.com
Web: www.sys-seminar.com

Teresa Schudrowitz
Systems Seminar Consultants, Inc.
2997 Yarmouth Greenway Dr
Madison, WI 53711
Work Phone: (608) 279-9964 x309
Fax: (608) 278-0065
Email: tschudrowitz@sys-seminar.com
Web: www.sys-seminar.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

SUGI 30 Tutorials

	SUGI 30 Proceedings Table of Contents

