
 1

Paper 247-30

The Basics of Using SAS® Indexes

Michael A. Raithel, Westat, Rockville, MD

Abstract
If there was a SAS performance tool that could drastically reduce your program’s I/O’s and response time, and lower
its CPU time, would you use it? Well, this type of performance tool exists; it is called “SAS Indexes.” SAS Indexes
can dramatically improve the performance of programs that access small subsets of observations from large SAS
data sets. However, many SAS programmers never bother to learn about them or to use them. This is your
opportunity to add this performance tool to your SAS programming repertoire.

This paper discusses how to create simple and composite SAS indexes, how to determine which variables make
good index key variables, when creating and using indexes is appropriate, what centiles are, and how to generate
index usage messages. It illustrates how indexes can improve processing when subsetting and/or updating a large
SAS data set and when an index can optimize a BY statement. After reading this paper, you will have the basic
information that you need to create and use SAS Indexes to improve the performance of your SAS applications.

Introduction
It is not too hard to understand how a SAS index can help you to directly access the observations that you need in a
particular SAS data set. As an exercise, do the following: Open SAS Online Documentation, Click on the Search
tab, enter the word “rtrace” into the Search tab’s window, and click on <Search>. The SAS Online Documentation
search function will return about a dozen links. When you click on any of those links, you go directly to a page in the
documentation that discusses the SAS RTRACE facility. This saves you the tedious effort of going through the entire
SAS Online documentation, page-by-page, looking for occurrences of the word “rtrace”.

A SAS index is analogous to the search function, above. A good index will allow your programs to quickly access the
subset of SAS observations that you need from a large SAS data set. This will dramatically improve the speed and
efficiency of your SAS programs. Conversely, a badly conceived SAS index will return far too many observations and
be no better than reading the entire data set sequentially. (In keeping with the analogy, above, consider how many
pages would be returned and how much longer it would take if you searched the SAS Online Documentation for the
word “SAS”). That is why it is important to know more about the selection criteria for index variables, as well as the
actual creation and use of SAS indexes.

This paper is an abbreviated version of the Hands On Workshop that will be presented at SUGI 29. The following
sections present a balanced overview of SAS index creation and usage. To learn more about SAS indexes, refer to
the References section at the end of this paper.

To Index or Not to Index?
Perhaps the biggest question associated with SAS indexes is: When is it appropriate to create one? The basic goal
of having a SAS index is to be able to efficiently extract a small subset of observations from a large SAS data set. In
doing so, the amount of computer resources (CPU time, I/O’s, Elapsed time, etc.) expended should be less than if
SAS read the entire data set sequentially. Therefore, if you will be extracting small subsets from a large SAS data
set, it is appropriate to create an index to help you. Here are the two main considerations for when to create an
index.

1. The Size of the Subset
For an index to be effective, it should extract a small subset from a large SAS data set. It is easier to define “small
subset” than it is to define “large SAS data set”. A “small subset” is from 1% to 15% of the total number of
observations found in a SAS data set. Table 1 provides the rules of thumb for the amount of observations that you
may efficiently extract from a SAS data set using an index.

Subset Size Indexing Action
1 % - 15% An index will definitely improve program performance
16% - 20% An index will probably improve program performance
21% - 33% An index might improve or it might worsen program performance
34% - 100% An index will not improve program performance

 Table 1. Index subset guidelines.

SUGI 30 Tutorials

 2

People normally consider a SAS data set to be “large” when it contains tens of thousands, hundreds of thousands, or
millions of observations. Since SAS normally reads SAS data sets sequentially, an appreciable amount of computer
resources are consumed as a large SAS data set is read. Using an index causes SAS to read only a small portion of
a larger data set. So, the larger the SAS data set—and the smaller the subset—the more likely that the data set will
be a good candidate for indexing.

2. Frequency of Use
The more often an index is used, the more cost effective it becomes in terms of the computer resources necessary
for its creation and its upkeep. Many programmers forget that it takes computer resources to initially build an index.
The CPU time and I/O’s expended during the creation of an index are pure overhead, since no data was processed;
no report was produced. It also takes CPU time and I/O’s to keep an index updated each time its attendant SAS data
set is updated. Consequently, it does not make sense to build an index and use it only one or two times. Infrequent
use of an index would not recoup the computer resources that were expended in creating it. Therefore, if you predict
that you would access a SAS data set very often via an index, then that data set is a good index candidate.

Types of Indexes
You can build an index from a single SAS variable or from multiple SAS variables. An index created from a single
SAS variable is called a Simple index. An index created from two or more variables is called a Composite index. If
you will be subsetting a SAS data set via the value of a single variable, then you will want to consider building a
Simple index based on that variable. For instance, if you always extract a subset of observations based on
cdnumber, then cdnumber would be a likely candidate for a Simple index. On the other hand, if you are always using
several variables to subset your data, then they might be good candidates for the creation of a composite index. For
example, if you always subset on the values of cdnumber and artistname, then building a composite index on the
values of cdnumber and artistname would be in order.

When Indexes are Used
SAS does not automatically use an index to access data in a SAS data set just because you have created one.
There are four constructs that you must specify in a SAS program to get SAS to use an existing index. They are
listed below, and further explained in the section of this paper titled Exploiting Indexes.

• A WHERE statement in a DATA or PROC step
• A BY statement in a DATA or PROC step
• The KEY option on a SET statement
• The KEY option on a MODIFY statement

SAS will not necessarily us an existing index even when you do use a WHERE or BY statement. SAS first calculates
if using an index will be more efficient than reading the entire data set sequentially. The internal algorithms take a lot
of factors into consideration, including data set size, the index or indexes that are available, and centile information.
(For more information on “centiles”, see the section of this paper titled Centiles). If SAS predicts that it will be more
efficient to use a specific index to return observations than to read the entire data set, then it will use that index. If
not, then it will read the entire data set, sequentially, to return the observations. However, SAS will not even consider
using an index if you do not use a WHERE or BY statement (and, of course, if you do not use the KEY option).

Most of the time, SAS makes good decisions regarding whether or not to use an index. But, its internal calculations
are not infallible, and sometimes the resources consumed when reading a large subset of data via an index are
greater than reading the entire SAS data set. You can use the IDXNAME= and IDXWHERE= options to overeride
SAS’ default index usage. A discussion of these options is outside the scope of this paper. Refer to the references
at the end of this paper for more information on these two options.

SAS will automatically use an index when you specify the KEY option on either a SET statement or a MODIFY
statement. So, you do not have to be concerned as to whether or not an existing index is used.

You can have SAS index usage information posted to your SAS Log by specifying MSGLEVEL=I in an OPTIONS
statement. Here are examples of messages posted to the SAS Log when an index is used with a BY statement and
with a WHERE statement, respectively:

INFO: Index cdnumber selected for BY clause processing.

INFO: Index cdnumber selected for WHERE clause optimization.

SUGI 30 Tutorials

 3

If you fail to have MSGLEVEL=I specified in an OPTIONS statement, you will not have any feedback that the indexes
you have created are being used. So, you should always make sure that this option is enabled when working with
indexes.

Index Variable Selection
Since SAS indexes consume computer resources when being built and maintained, and since they take up disk
space, you will want to be selective about which variables you select as index key variables. The major selection
criteria are listed below. The ideal Index key variable will satisfy all three criteria.

• Which variable or variables will you most often use to subset the SAS data set? If you will most likely

always use a particular variable to subset a large SAS data set, then that variable is a good candidate for
becoming an index key variable. If it is a single variable, then it is a candidate for becoming a Simple index. For
instance, if you are always subsetting a large SAS data set by cdnumber to obtain a small subset of
observations, then you would make a Simple index from cdnumber. Alternately, if you are always subsetting a
large SAS data set by two variables, say cdnumber and artistname then you would create a Composite index
from those two variables.

• Is your proposed index key variable discriminant? A variable is discriminant if its values are very specific to

a small set of observations within a SAS data set. In practical terms, this means that choosing particular values
of a discriminant variable will yield small subsets from within the large SAS data set. Variables such as Gender,
Age, Ethnicity, First Name, and Country are not normally discriminant. Variables such as Last Name, Zip Code,
Social Security Number, Patient ID, and Part Number are usually discriminant. The more discriminant a variable
is, the better it will be at returning a small subset of observations from a large SAS data set if it becomes an
index key variable.

You can determine how discriminant a variable is before using it to build an index by running the FREQ
procedure. Run PROC FREQ against your index candidate variables. Once you have the frequencies, check
them against Table 1, above. Variables with frequencies that fall in the 1 – 15% range are good candidates for
indexing. Those in the 16 – 20% range are not very good candidates, but still may yield some performance
improvements if indexed and used. You should not consider any variables with frequency values beyond the 16
– 20% range.

• Is the SAS data set sorted into ascending order by the proposed index variable? An index created from a
variable that was used to sort a SAS data set into ascending order is a more efficient index. This is so because
observations with the same index key variable values will be stored on the same or on adjacent pages in the
SAS data set. When the index is used, fewer SAS pages have to be read since observations with the same key
variable values are concentrated together. This will result in fewer input/output operations. Therefore, variables
used to sort the large SAS data set are prime candidates for index key variables.

Creating Indexes
There are three SAS tools that you can use to create indexes: PROC DATASETS, PROC SQL, and the DATA
statement. Each one will accomplish the same end result, so your use of any particular one will be more a matter of
preference. This section describes all three methods of creating SAS indexes.

PROC DATASETS
The DATASETS procedure may be used to generate an index on a SAS data set that already exists. The INDEX
CREATE statement is used in PROC DATASETS to specify that an index is to be created. Here is the general form
of the DATASETS procedure statements needed to build an index:

PROC DATASETS LIBRARY=libref;
MODIFY SAS-data-set;

 INDEX CREATE varlist / UNIQUE NOMISS
 UPDATECENTILES = ALWAYS | NEVER | integer;

In the DATASETS procedure, libref and SAS-data-set are the SAS data library and SAS data set that is to be
modified, respectively. In the INDEX CREATE statement varlist is the list of SAS variables that will become index
key values. (See the examples below for the difference between the varlist for a Simple index and the varlist for a
Composite index). The UNIQUE option specifies that key variable values must be unique within the SAS data set.
The NOMISS option specifies that no index entries are to be built for observations with missing key variable values.
The UPDATECENTILES option allows you to override when SAS updates the index’s centiles. (There will be more
information on this in the Centiles section, below). The UNIQUE, NOMISS, and UPDATECENTILES options are
optional and do not need to be specified unless you have a particular need for them.

SUGI 30 Tutorials

 4

Simple Index Using PROC DATASETS
Here is an example of using the DATASETS procedure to create a Simple Index:

proc datasets library=cdsales;
 modify bighits;
 index create cdnumber / unique;
run;

In the example, above, the bighits SAS data set in the cdsales SAS data library is having a Simple index created for
the cdnumber variable. Values of cdnumber must be unique for the index to be built. And, they must be unique
when attempts are made to add additional observations to the bighits SAS data set.

Composite Index Using PROC DATASETS
Here is an example of using the DATASETS procedure to create a Composite Index:

proc datasets library=cdsales;
 modify bighits;
 index create numname=(cdnumber artistname) / nomiss;
run;

In the example, above, the bighits SAS data set in the cdsales SAS data library is having a Composite index created
for the cdnumber and artistname variables. The name of the Composite index is numname. Observations which
have values of cdnumber or artistname missing will not be added to the index.

PROC SQL
The SQL procedure can also be used to add indexes for existing SAS data sets. This can be done by using the
CREATE INDEX statement. Here is the general format:

CREATE <UNIQUE> INDEX index-name ON data-set-name(varlist);

As with its use in the DATASETS procedure, the UNIQUE option specifies that the values of the index variables must
be unique within the SAS data set. Index-name is the name of the single index variable for Simple indexes and a
programmer-chosen name for Composite indexes. Data-set-name is the name of the SAS data set that the index will
be created for. If a Composite index is being created, then varlist contains the list of variables. Note that neigher the
NOMISS nor the UPDATECENTILES options are available for indexes created by the SQL procedure.

Simple Index Using PROC SQL
Here is an example of creating a Simple index with the SQL procedure:

proc sql;
 create unique index cdnumber on cdsales.bighits;
quit;

In the example, above, a Simple index is created for the cdsales.bighits SAS data set, based on the value of the
cdnumber variable. Values of cdnumber must be unique for the index to be created.

Composite Index Using PROC SQL
Here is an example of creating a Composite index with the SQL procedure:

proc sql;
 create index numname on cdsales.bighits(cdnumber artistname);
quit;

In the example, above, a Composite index named numname is created for the cdsales.bighits SAS data set. The
numname index is based on the values of the cdnumber and artistname variables. Since the UNIQUE option was not
used, there may be duplicate values of the cdnumber/artistname paired variables.

Data Step
You can build an index for a new data set by using the INDEX= data set option in the DATA statement. Here is the
general format:

 DATA data-set-name(INDEX=(varlist / <UNIQUE><NOMISS>

 <UPDATECENTILES= ALWAYS | NEVER | integer>));

SUGI 30 Tutorials

 5

In the form above, data-set-name is the name of the new SAS data set . Varlist is the name of the key variable—if
this is a Simple index—or a list of variables if this is a Composite index. See the previous sections for the meaning of
the UNIQUE, NOMISS, and UPDATECENTILES options.

Simple Index Using the DATA Step
This is an example of how you can build a Simple index with a DATA step:

data cdsales.bighits(index=(cdnumber / unique));
set olddata.oldhits;
… more SAS Statements…
run;

In the example, a Simple index is being constructed for the cdsales.bighits data set as it is created during execution
of the DATA step. The index variable is cdnumber. Values of cdnumber must be unique for the index to be created.

Composite Index the DATA Step
Here is an example of how a DATA step is used to create a Composite index:

data cdsales.bighits(index=(numname=(cdnumber artistname) / nomiss));
set olddata.oldhits;
… more SAS Statements…
run;

In this example, a Composite index is created for the cdsales.bighits data set. The Composite index is named
numname, and it is built from the values of the cdnumber and artistname variables. The NOMISS option specifies
that observations with missing values for either cdnumber and artistname are not to have index entries created for
them. Also, note that since the UNIQUE option was not used, there can be duplicate values of cdnumber /artistname
in the cdsales.bighits data set.

Exploiting Indexes
Once you have created indexes on SAS data sets, you will want to exploit them. There are four places that you may
specify that an index be used to help reduce the processing overhead of your SAS programs. The following sections
provide an overview of each.

Using an Index in a WHERE Statement
The WHERE statement can be used in DATA and PROC steps to exploit a SAS index. The WHERE statement has
the following form:

 WHERE where-expression;

The where-expression may be any valid SAS language arithmetic or logical expression. However, only these eleven
forms of the WHERE expression will allow SAS to use an existing Simple index:

1. Normal comparison operators such as: where x > 500;

2. Normal comparison operators with NOT: where x ^> 500;

3. The CONTAINS operator: where state contains “East”;

4. A comparison operator with the colon modifier: where state =: “East”;

5. The TRIM function: where trim(state) = “North Dakota”;

6. Range conditions with upper and lower bounds or range conditions that use the BETWEEN-AND
operator:

where 42 < X < 112;

where X between 42 and 112;

7. The pattern matching operators LIKE and NOT LIKE: where state like “East %”;

SUGI 30 Tutorials

 6

8. The IS MISSING and IS NULL operators:

where name is missing;

where iq is null;

9. The SUBSTR function when it is of the form:

where substr(argument,position,<n>) = “value”’;

In this substring form, the following must be true for an index to be used:

a. The value of position must be 1.

b. The value of <n> must be less than or equal to the length of
argument.

c. The value of <n> must be equal to the length of value

Here is an example: where substr(state,1,4) = “East”;

10. The IN operator

where region in(“East”, “West”);

11. Any WHERE clause composed of two or more of the above ten forms connected via AND:

where (region in(“East”, “West”)) and (name is missing);

To utilize a Composite index in a WHERE expression, SAS uses "compound optimization". Compound
optimization takes place when several variables of a composite index are used in a WHERE expression
and are joined together with logical operators such as AND and OR. One of the following conditions must
be true for compound optimization to occur:

1. At least the first two key variables in the composite index must be used in the WHERE condition:

where state eq 15 and county eq 30 and population lt 20000;

2. The conditions are connected using the AND logical operator:

where state eq 15 and county eq 30;

3. Any conditions using the OR logical operator must specify the same variable:

where state eq 20 and (county eq 30 or county eq 40);

4. At least one condition must be the EQ or IN operator:

where state eq 10 and county in(1,3,5);

For the examples, above, consider that there is a composite index named STATCNTY that is made from
the STATE and COUNTY variables. SAS recognizes that the conditions are right for using compound
optimization and utilizes the REGDIST composite index to optimize WHERE expression processing.

Here is an example of a WHERE statement that exploits the a Simple index built from the variable cdnumber:
data cdsales;
set olddata.oldhits;

SUGI 30 Tutorials

 7

where cdnumber eq “123456”;
… more SAS Statements…
run;

This example uses a WHERE statement to exploit the numname Composite index built from the cdnumber and
artistname variables in the olddata.oldhits SAS data set:

data cdsales;
set olddata.oldhits;

where cdnumber eq “123456” and artistname eq “Led Zeppelin”;
… more SAS Statements…
run;

Using an Index in a BY Statement
You can use the BY statement to return observations that are sorted into ascending order of the index variables’
values. Here is the format of the BY statement:

 BY <DESCENDING> varlist <NOTSORTED>;

In a BY statement, the DESCENDING option specifies that options be returned in descending value order of the
varlist variable(s). The NOTSORTED option specifies that observations with the same varlist BY values are grouped
together in the data set. If either the DESCENDING or the NOTSORTED options are specified SAS will not exploit
an index to optimize the BY statement. If they are not specified, SAS will use an index, if any one of the following
conditions are true:

• SAS will use a Simple index when:
o varlist is the key variable in a Simple index
o varlist contains two or more variables and the first variable in varlist is the key variable in a Simple

index
• SAS will use a Composite index when:

o varlist is a single variable that is the first key variable in a Composite index
o varlist is made up of two or more variables that match the first two or more key variables in a

Composite index

Here is an example of a BY statement that exploits the numname Composite index that is made up of the cdnumber
and artistname variables:

data cdsales;
 set olddata.oldhits;
 by cdnumber artistname;
 …more SAS statements…
run;

In the example, above, observations will be returned in ascending order of the values of cdnumber/artistname.

Using an Index in a KEY Option on a SET Statement
You can use the KEY option on a SET statement to exploit indexes associated with the SAS data set that is being
read. The KEY option allows you to retrieve only selected observations from a data set. Here is the format of the
SET statement with the KEY option:

 SET data-set-name KEY=index-name;

This is an example of exploiting the KEY= option:

data cdsales;
set trans.hits(keep=cdnumber trnartist trnsales);
set olddata.oldhits key=cdnumber;
 …more SAS statements…
run;

In the example, variables cdnumber, trnartist, and trnsales are read from the trans.hits SAS data set. When each
observation in trans.hits is read, the value of cdnumber is used in an index search of the olddata.oldhits SAS data
set, where cdnumber is the index key variable in a Simple index. If the index search is successful, then an
observation is returned from the cdnumber SAS data set into the new cdsales SAS data set.

SUGI 30 Tutorials

 8

Using an Index in a KEY Option on a MODIFY Statement
You use the KEY option in a MODIFY statement to direct SAS to use an index to access the observation in a SAS
data set that is to be modified. Here is an example of how this could be coded:

data current.cdsales;
set update.sales(keep=cdnumber trnsales);
modify current.cdsales key=cdnumber;
sales = trnsales;
 …more SAS statements…
run;

In the example above, the values of index key variable cdnumbe , that resides in the update.sales SAS data set are
used to directly access observations in the current.sales SAS data set. The KEY option specifies that SAS use the
cdnumber Simple index to obtain observations from current.cdsales that are to be modified. Successful index
searches result in the value of sales in the current.cdsales SAS data set being set to the value of trnsales that was
input from the update.sales data set.

Centiles
The word “centile” is a contraction of the words “cumulative percentiles”. Centiles are a built-in feature of SAS
indexes and are essentially twenty-one separate values saved in the index descriptor. These values represent the 0,
5,10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, and 100 percentile values of key variables in an
index. The first centile, 0, contains the minimum index key value; the last centile, 100, has the maximum index key
value stored in it. The other centiles are such that 5% of the data has index values less than the 5th centile, 20% of
the data has index values less than the 20th centile, etc.

SAS uses centiles to determine if it is more efficient to use an index to read a SAS data set, or whether it is more
efficient to just read the entire SAS data set. SAS initializes each index’s centiles when the index is created and
keeps them updated when a certain percentage of the index key variable’s values have changed within the data set.
The default value for updating centiles is 5%. This means that when 5% of the variables in the SAS data set that are
index key variables have their values changed, SAS will recompute the centiles for the index.

You can examine a SAS index’s centiles to determine just how balanced the index is. By executing the CONTENTS
procedure with the CENTILES option, you can discover if the index key variable values are really spread out
throughout the entire SAS data set. If so, then the index will yield efficient processing of the data set. If not, then you
might want to reexamine why that particular variable—or variables—were used to create an index. Here is an
example of the CONTENTS procedure with the CENTILES option:

Proc contents data=trans.hits centiles;
Run;

Appendix A contains an example of centiles listed in the Alphabetic List of Indexes and Attributes section of a
CONTENTS procedure output. In the example, you can see that it lists a Simple index built from the variable STATE.
The NOMISS option was specified when the index was created, the centiles will be updated after 5% of the values of
STATE have been changed in the SAS data set, and there are 16 unique values of STATE in the SAS data set. The
minimum value of STATE is “Baja California Norte”, and the maximum value of STATE is “Washington”. Most of the
values of STATE are discriminant, because most represent 5% or less of the values within the observations in the
SAS data set. However, you can see that one particular state, “Illinois”, occupies five percentiles. This means that
an index search on STATE for the value “Illinois” would return 25% of the observations in the SAS data set. That is
not an acceptable observation percentage and could result in SAS consuming more computer resources through
using the index than it would by doing a sequential read of the entire data set. This is an insight that you can only get
through reviewing the centiles.

There is a lot more to the topic of centiles than can be covered in this paper. For instance, you may reset the default
centile refresh rate from 5% to any percentage that you like. Additionally, you can refresh an index’s centiles by
executing the DATASETS procedure. For more information on centiles, refer to the references at the end of this
paper.

Conclusion
SAS Indexes can be used to drastically reduce the computer resources needed to extract a small subset of
observations from a large SAS data set. But, before creating an index, you must decide if one is appropriate in
accordance to the criteria presented above. After deciding that an index is appropriate, you have three tools to
choose from to create one: the DATASETS procedure, the SQL procedure, and the DATA step. You can exploit
indexes with the WHERE statement, the BY statement, or the KEY statement used in either a SET or MODIFY
statement. In doing so, you will be increasing the efficiency of your SAS programs that use the index.

SUGI 30 Tutorials

 9

Disclaimer
The contents of this paper are the work of the author and do not necessarily represent the opinions,
recommendations, or practices of Westat.

References
Raithel, Michael A. 2003. Tuning SAS® Applications in the OS/390 and z/OS Environments, Second Edition. Cary,
NC: SAS Institute Inc.

SAS OnlineDoc®, Version 8, Copyright 2000, SAS Institute, Inc.

Contact Information
Please feel free to contact me if you have any questions or comments about this paper. You may reach me at:

Michael A. Raithel
Westat
1650 Research Boulevard
Room RW4521
Rockville, Maryland 20850

michaelraithel@westat.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Appendix A. Centiles from a CONTENTS Procedure Listing

 -----Alphabetic List of Indexes and Attributes-----

 Current # of
 Nomiss Update Update Unique
 # Index Option Centiles Percent Values Variables
 --
 1 STATE YES 5 0 16
 --- Baja California Norte
 --- Baja California Norte
 --- British Columbia
 --- California
 --- Campeche
 --- Colorado
 --- Florida
 --- Illinois
 --- Illinois
 --- Illinois
 --- Illinois
 --- Illinois
 --- Michoacan
 --- New York
 --- North Carolina
 --- Nuevo Leon
 --- Ontario
 --- Quebec
 --- Saskatchewan
 --- Texas
 --- Washington

SUGI 30 Tutorials

	SUGI 30 Proceedings Table of Contents

