SUGI 30 Tutorials

Paper 257-30

An Introduction to SQL in SAS®

Pete Lund
Looking Glass Analytics, Olympia WA

ABSTRACT

SQL is one of the many languages built into the SAS® System. Using PROC SQL, the SAS user has access to a
powerful data manipulation and query tool. Topics covered will include selecting, subsetting, sorting and grouping
data--all without use of DATA step code or any procedures other than PROC SQL.

THE STRUCTURE OF A SQL QUERY

SQL is a language build on a very small number of keywords:

e SELECT columns (variables) that you want

e FROM tables (datasets) that you want

e ON join conditions that must be met

e WHERE row (observation) conditions that must be met
e GROUP BY summarize by these columns

e HAVING summary conditions that must be met

e ORDERBY sort by these columns

For the vast majority of queries that you run, the seven keywords listed above are all you’ll need to know. There are
also a few functions and operators specific to SQL that can be used in conjunction with the keywords above.

SELECT is a statement and is required for a query. All the other keywords are clauses of the SELECT statement.
The FROM clause is the only one that is required. The clauses are always ordered as in the list above and each
clause can appear, at most, once in a query.

The nice thing about SQL is that, because there are so few keywords to learn, you can cover a great deal in a short
paper. So, let’s get on with the learning!

As we go through the paper you will see how much sense the ordering of the SQL clauses makes.

You're telling the program what columns you want to SELECT and FROM which table(s) they come. If there is more
than one table involved in the query you need to say ON what columns the rows should be merged together. Also,
you might only want rows WHERE certain conditions are met.

Once you've specified all the columns and rows that should be selected, there may be a reason to GROUP BY one
or more of your columns to get a summary of information. There may be a need to only keep rows in the result set
HAVING certain values of the summarized columns.

Finally, there is often a need to ORDER BY one or more of your columns to get the result sorted the way you want.
Simply thinking this through as we go through the paper will help you remember the sequence of clauses.

CHOOSING YOUR COLUMNS - THE SELECT STATEMENT

The first step in getting the data that you want is selecting the columns (variables). To do this, use the SELECT
statement:

select BookingDate,
ReleaseDate,
ReleaseCode

SUGI 30 Tutorials

List as many columns as needed, separated by commas. There are a number of options that can go along with
columns listed in a SELECT statement. We'll look at those in detail shortly.

We'll also see that new columns can be created, arithmetic and logical operations can be performed and summary
functions can be applied. In short, SELECT is a very versatile and powerful statement.

CHOOSING YOUR TABLE — THE FROM CLAUSE

The next step in getting that data that you want is specifying the table (dataset). To do this, use the FROM clause:

select BookingDate,
ReleaseDate,
ReleaseCode
from SASclass.Bookings
The table naming conventions in the FROM clause are the normal SAS dataset naming conventions, since we are
referencing a SAS dataset. You can use single-level names for temporary datasets or two-level names for
permanent datasets.

These two components (SELECT and FROM) are all that is required for a valid query. In other words, the query
above is a complete and valid SQL query. There are just a couple additions we need to make for SAS to be able to
execute it.

UsING SQL IN SAS

Now that we know enough SQL to actually do something “legal” (SELECT and FROM), let’s see how we would use
SQL in SAS: PROC SQL.

proc sql;
select BookingDate,
ReleaseDate,
ReleaseCode
from SASclass.Bookings;

quit;
There are a number of things to notice about the syntax of PROC SQL.

First, note that the entire query (SELECT...FROM...) is treated a single statement. There is only one semicolon,
placed at the end of the query. This is true no matter how complex the query or how many clauses it contains.

Second, the procedure is terminated with a QUIT statement rather than a RUN statement. Queries are executed
immediately, as soon as they are complete — when it hits the semicolon on the SELECT statement. This has a
couple of implications: 1) a single instance of PROC SQL may contain more than one query and 2) the QUIT
statement is not required for queries to run.

Book ing
Finally, SQL statements can only run inside PROC SQL. They cannot be Wi e e
embedded in other procedures or in data step code. 09/30/2008 0373072003 BA

10/02/2003 1070372003 TC
10/04/2003 107042003 B

By default, the output of the query above would produce these results (see right) 10/07/2003 10/07/2003 PR
h : 10/09/2003 12/05/2003 CR
in the SAS output window. 10/13/2003 1071472003 CR
101742003 10720752003 TC

h | | h hich th ¢ h 10/20/2003 1o::z|fzoos BA
i i i i ifi i 102372003 10/24/2003 CR

e columns are laid out in the order in w ich they were speci ied in the Fusuans. isceiczae EH
SELECT and, by default, the column label is used (if it exists). 10/28/2003 10/29/2003 PR
1053172003 11703752003 CR

12/29/2003 . IN

WHAT TO DO WITH THE RESULTS HPoNE00s. VRwied e

By default, the results of a query are displayed in the SAS output window. This statement is actually a bit narrow.
PROC SQL works just like all other SAS procedures: the results of a SQL SELECT are displayed in all open ODS
destinations. The following code:

ods html body='c:\temp\Bookings.html';
ods pdf file='c:\temp\Bookings.pdf';

SUGI 30 Tutorials

proc sql;
select BookingDate,
ReleaseDate,
ReleaseCode
from SASclass.Bookings;

quit;

ods html close;
ods pdf close;

will produce output in all three open ODS destinations — the output window (the LISTING destination is open by
default), an HTML file and a PDF file.

You can create a SAS dataset (a table) from the results of the query by preceding the SELECT statement with a
CREATE TABLE statement.

| BookNum_| Severity| INFRACTIONDATE|

proc sql; 1 [1srooam 6 08/04/2001
create table ReleaselInfo as 2 |197007400 G 08/29/2001
select BookingDate, 3 |197007400 S (11/28/2002

ReleaseDate, 4 197016680 G 12/18/2001

ReleaseCode 5 |197016680 G 12/20/2001

. 6 |197016680 G 04/01/2002

from SASclass.Bookings; 7 |197otee80 G 04/01/2002

quit; 8 |197016880 S 05/05/2002

9 197018880 S 09/02/2002

. 10 [197016680 & 09/21/2002

The CREATE TABLE statement does two things: 1 lioroiess0 & 11/02/2002
1. Creates a new table (SAS dataset). 12 |197016680 G 11/05/2002

2. Suppresses the printed output of the query. No
matter how many ODS destinations are open, no output is generated.

Notice that the order of columns in the SELECT statement not only determines the order in the query output, it also
determines the order in a table if CREATE TABLE is used.

The naming conventions for tables in the CREATE TABLE statement are the same as elsewhere in the SAS System
because we're really just creating a SAS dataset.

SELECT STATEMENT OPTIONS

The columns on a SELECT statement can be renamed, relabeled or reformatted.

e Rename:use the AS keyword e Format: use the FORMAT= keyword
e Label: usethe LABEL=keyword e Length: use the LENGTH= keyword
The following query would create a temporary SAS dataset called ReleaseCodes having three variables:
e BD
e RD

e ReleaseCode

proc sql;
create table ReleaseCodes as
select BookingDate as BD,
ReleaseDate as RD format=monyy7.,
ReleaseCode label='Rel Code'
from SASclass.Bookings;

quit;

By default, all formats and labels are carried over from the original table when a new table is created. In the above
query we associated a new format with ReleaseDate, which we renamed RD. We also attached a new label to
ReleaseCode. Any other formats or labels would remain as they were.

SUGI 30 Tutorials

[P Sasclass.Bookings Properties

General | Dietsds | Cokmens | indswes | Inteoty | Passwords |

Find cobamn name: | .
T ¥ Work-Releasecodes Properties

Comritame I Typs | sogth |Fomst | Lobel] Genesal | Detads | Cokemes | Indexes | Inteorty | Passwosds |
AnrErsstabus Teet 1 AF15 Shahus

A derestigency Teut S JARFMT. Amesting Agency

WBooknaDets Nuiber 4 MMOOVYI0. Dake of Bocking Find coamn rame: |

W BookingReiTme huber 4 TIMEAMPM, Bocking relesse In\

¥ BookingTime hurbser 4 TIMEAMPM, Booking bime Codutrn Natne I Type | Wength | Format || Label :
AnBookiium Text L] Bogking furest Number WED rere 4 MDDV, Dateof Booking
AMED_FIM Teut 1 $E, Mozt Serious Offenss 1 WRD hube 4 MONFYZ, Dabeof Release
AaME0_Type Taaxt 1 $MSOCCAT. AR eleaseCode Teut 2 Rel Code

W HunCharges burrkser 3 CHGGRP Humber of changes on _)
AntrpAgency Test 9 $ARFMI. Cuiginsting ATy The structure of the slimmed-down Bookings
AukolosioCods Text z Release Reason table, with its new column names and
T hurber 4 MMCDAYID. Date of Release

i formatting
The structure of the original Bookings table.

Notice that the attributes of the columns in the new table are the same as those in the original, unless they were
changed. Even though we gave BookingDate a new name (BD) the other attributes remain — the same format and
label.

There is no restriction on the number of attributes that can be set on a column. A column can be renamed,
reformatted and relabeled all at the same time. Simply separate the attribute assignments with spaces — note that, in
the query above, ReleaseDate is both renamed and reformatted.

SELECTING ALL COLUMNS — A SHORTCUT

All the columns in a table can be specified using an asterisk (*) rather than a column list. For example,

proc sql;
create table BookingCopy as
select *
from SASclass.Bookings;
quit;

If you have a number of columns in a table, and you want them all, this shortcut is obviously a time saver.

The downside is that you must know your data! If you specify the columns, you know what you're getting. This
shortcut can also be a little more problematic when you start working with multiple tables in joins and other set
operations.

CREATING NEw COLUMNS

Just as we did to rename a column, the AS keyword is used to name a new column. In the above example two
existing columns were used to create a new column. Notice that the syntax of the assignment is opposite of a normal
arithmetic expression — the expression is on the left side of “AS” (the “equal sign”).

Dazelof Date of
The output from the above query would look like this: Booklng; __iRelesse

01/01/2000 01/02/2000
. 01/01/2000 01/24/2000

select BookingDate, 01/01/2000 01/03/2000
01/02/2000 01/23/2000

ReleaseDate, 01/03/2000 01/04/2000

- i 01/03/2000 01/06/2000

ReleaseDate. BookingDate as LOS 0170278000 01 /05/9000

from SASclass.Bookings; 01/03/2000 01/04/2000
01/05/2000 01/27/2000

01/06/2000 06/04/2000

Ll

~
- — = 1 63 =

Ll
on

You can see that the new column is labeled “LOS” which would have been the variable name if we'd had a CREATE
TABLE statement. Without the AS, the column in the output would have had no label, just blank space, and the
name of the new column in the new table would be _TEMAO0O1. If you had additional new columns created without
AS they would be named _TEMAOQ02, _TEMAO0O03 and so on. You can see the importance of naming your new
columns!

Any SAS formats, including picture formats, and informats can be used in a SELECT statement. The following
SELECT statements are all valid:

SUGI 30 Tutorials

select put (RaceCd, $Race.) as Race,
select input (Bail,BailGroup.) as GroupedBail,..

select put (Infractions,InfractionGrp.) as NumInfractions,..

The syntax is exactly the same as using a PUT or INPUT function in data step code.
CONDITIONAL LOGIC IN THE SELECT STATEMENT — THE CASE OPERATOR

There is yet another way to create new columns in the SELECT statement. While there is no “if...then...else”
statement, the CASE operator gets close. The syntax of the CASE operator is quite simple — a series of
WHEN... THEN conditions wrapped in CASE...END AS.:

CASE
WHEN <condition> THEN <value>
WHEN <condition> THEN <value>
ELSE <value>

END AS <column name>

The following query selects all the columns from the Infractions table, notice the “*”, and then creates a new column,
CheckThese, that is set to “X” for inmate on staff assaults (“IS”) or serious infractions (“S”).

select *,
case
when InfractionType eq 'IS' then 'X'
when Severity eq 'S' then 'X'
else ' '
end as CheckThese
from SASclass.Infractions;

There can be as many WHEN conditions as you like and they can contain any valid SAS expression, including logical
operators. So, the CASE logic above could also have been written as:

case
when InfractionType eq 'IS' or Severity eq 'S' then 'X'
else ' '

end as CheckThese

As the WHEN conditions are processed the value is set based on the first condition that is true. For example, let's
change the query above to prioritize the infractions that we want to check on. We want to look at severe inmate on
staff assaults first, then other inmate on staff assaults, then other severe infractions. The new CASE logic could be:

case
when InfractionType eq 'IS' and Severity eq 'S' then 1
when InfractionType eq 'IS' then 2
when Severity eq 'S' then 3
else 0
end as CheckThese

The order of the conditions is important, since the severe inmate on staff assaults meet all three of our criteria for
assigning a value to CheckThese. Just like IF...THEN...ELSE, a value is assigned when the first WHEN condition is
true.

The ELSE and AS keywords are optional. If ASis omitted the new column will be auto-named, as we saw earlier,
starting with _TEMAOO1.

If ELSE is omitted the value of the new column will be set to missing if none of the WHEN conditions are met. A note
will be included in the SAS log reminding you of this. In our first query there would be no difference in the outcome if
the ELSE was omitted or not, since we set the value to missing. However, it is good practice to be specific in the

SUGI 30 Tutorials

assignment of the “default” value. You avoid the note in the log and you make it easier to debug and maintain later
on.

If all of the WHEN conditions use the same column the column name can be added to the CASE operator and
omitted from the WHEN condition. For example, the following two examples are equivalent:

case case Age
when Age 1t 13 then ‘PreTeen’ when 1t 13 then ‘PreTeen’
when Age 1t 20 then ‘Teenager’ when 1t 20 then ‘Teenager’
else ‘Old Person’ else ‘Old Person’

end as AgeGroup end as AgeGroup

The column name (Age) is simply moved out of the WHEN condition and into the CASE operator. This is only valid
when using a single column.

CHOOSING YOUR Rows — THE WHERE CLAUSE

Now that we’ve selected and created the columns that we want, we might not want all the rows in the table. The
WHERE clause gives us a way to select rows.

The WHERE clause contains conditional logic that determines whether a row will be included in the output of the
query. The WHERE clause can contain any valid SAS expressions plus a number that are specific to the WHERE
clause.

Remember, like everything except SELECT and FROM, that the WHERE clause is optional. If it is included in a
query it always comes immediately after the FROM clause. If we wanted to select rows from the Infractions table for
only serious infractions, we could use the following query.

select *
from SASclass.Infractions
where Severity eq 'S';

The syntax of the WHERE clause is one or more conditions that, if true, causes the record to be included in the

output of the query. [f there is more than one condition to be met, use AND and/or OR to put multiple conditions
together. For example, if we wanted to further restrict the rows selected from the Infractions table to select only
serious inmate-on-inmate assaults we just need to add the second condition the WHERE clause:

select *

from SASclass.Infractions

where Severity eq 'S' and
InfractionType eq 'II';

There is no limit to the number of conditions you can have in your WHERE clause.

There is a difference between how SAS handles mismatched data types in WHERE clauses and other parts of the
language. (This is true whether using WHERE in PROC SQL or in a data step or other procedure.) In most cases
SAS will perform am automatic type conversion, from character to numeric or vice versa, to make the comparison
valid. For example, if NumCharges is a numeric field, the following datastep will execute but the SQL query will not:

data DataStepResult;
set SASclass.Bookings;
if NumCharges eq '2';
run;

proc sql;
create table QueryResult as
select *
from SASclass.Bookings
where NumCharges eq '2';

quit;

SUGI 30 Tutorials

The IF statement in the datastep does an automatic conversion of the ‘2’ to numeric and evaluates the expression. A
note is written to the log alerting you to this:

NOTE: Character values have been converted to numeric values at the places given by:
(Line) : (Column) .

The WHERE clause requires compatible data type and the query above generates an error:

ERROR: Expression using equals (=) has components that are of different data types.

The WHERE clause data-compatibility requirement is true whether it is used in a SQL query, datastep or other
procedure. The error messages written to the log may be different. For example, running the above datastep with a
WHERE statement rather than an IF statement generates a slightly different error message (though the step still fails
to execute):

data DataStepResult;
set SASclass.Bookings;
where NumCharges eq '2';
run;
ERROR: Where clause operator requires compatible variables.

SPECIAL WHERE CLAUSE OPERATORS

There are a number of operators that can be used only in a WHERE clause or statement. Some of them can add
great efficiency and simplicity to your programming as they often reduce the code needed to perform the operation.

e THE IS NULL AND IS MISSING OPERATORS

You can use the IS NULL or IS MISSING operators to return rows with missing values. The advantage of IS NULL
(or IS MISSING) is that the syntax is the same whether the column is a character or numeric field.

select *

from SASClass.Charges
where SentenceDate is null;

Note: IS MISSING is a SAS-specific extension to SQL.
In most database implementations there is a distinction between empty (missing) values and null values. Null values

are a unique animal and compared successfully to anything but other null values. You need to be aware of how nulls
values are handled if you are using SQL in a non-SAS environment.

e THE BETWEEN OPERATOR

The BETWEEN operator allows you to search for a value that is between two other values.

select *
from SASClass.Bookings
where BookingDate between '1jul2001'd and '303jun2002'd;

When using BETWEEN, be aware that the end points are included in the results of the query. In the example above,
7/1/2001 and 6/30/2002 are both included.

The column used with BETWEEN can be numeric or character. There are dangers in using character fields in any
non-equality comparison. You need to know the collating sequence that your operating system uses (i.e., is “a@”
greater than or less than “A”) and how any unfilled values are justified (i.e., “ a” is not the same as “a).

There is an interesting behavior of the BETWEEN operator. The values are treated as the boundaries of a range and
are automatically placed in the correct order. This means that the following two conditions produce the same result:

where ADPmonth between '13jul2001'd and '30jun2002'd

SUGI 30 Tutorials

where ADPmonth between '30jun2002'd and '13jul2001'd

The order of the BETWEEN values is not important, though it is recommended that they be specified in the correct
sequence for ease of understanding and maintainability.

e THE CONTAINS OPERATOR

You can search for a string inside another string with the CONTAINS operator. The following query would return all
rows where ChargeDesc contains “THEFT” — for example, “AUTO THEFT”, “THEFT 27, “PROPERTY THEFT".

select *
from SASClass.Charges
where ChargeDesc contains 'THEFT';

Like other SAS sting comparisons it is case sensitive. To make the comparison case insensitive you can use the
UPCASE function. The new WHERE clause:

where upcase (ChargeDesc) contains 'THEFT'

would also return “Car Theft” and “Theft of Property”.

The CONTAINS condition does not need to be a separate “word” in the column value. So, the above query would
also return “THEFT2” and “AUTOTHEFT".

e THE LIKE OPERATOR

You can do some rudimentary pattern matching with the LIKE operator.

o _ (underscore) matches any single character
o % (percent sign) matches any number of characters (even zero)
o other characters match that character

The WHERE clause below says, “Give me all rows where the charge description has the characters ‘THEFT’ with any
number of characters before or after.”

where ChargeDesc like 'S$THEFTS%';

Does this sound familiar? It will return the exact same rows as CONTAINS “THEFT” would. But, LIKE is much more
powerful! With LIKE you can specify, to a degree, where you want your search string to be found. Let’s take the
example above and look for “THEFT” in a number of places in the charge description.

where ChargeDesc like 'THEFTS%';

This would return any charge descriptions that starts with the work “THEFT” and is followed by anything else. Values
like “THEFT”, “THEFT 2” and “THEFT-AUTO” would all be found.

where ChargeDesc like 'STHEFT';

This WHERE would return all rows that ends with the word “THEFT” and starts with anything else. Again, “THEFT”
would be a valid value, as would “AUTO THEFT” and “3RD DEGREE THEFT". It would not return “AUTO THEFT 3”
as we made no provision for anything to come after “THEFT”.

where ChargeDesc like '$%_THEFT';

Now, this WHERE is similar to the one above, except that now there must be at least one character before “THEFT”.
This would exclude rows with the value “THEFT” from the result set. What would be the difference if we replaced the
underscore with a space? Remember, the underscore means any character and the space would mean a space.
So, the underscore would return “AUTO THEFT” and “AUTO-THEFT” whereas the space would only return “AUTO
THEFT”.

SUGI 30 Tutorials

Let’s look at one more example. Suppose we were interested in finding those people who had a previous theft
charge and never showed up for court. Now they are being booked into jail for failing to appear for their theft charge.
We can find that by looking for “THEFT” and “FTA” (failure to appear). We can use the following WHERE clause to

find them:
Charge Cumulative Cumulat ive
where ChargeDesc like 'THEFT FTA'; Desc Frequency Percent Frequency Percent
THEFT FTA 3 11.11 3 11.11
Here are the results of that query: s 2Rl %) jaiato b bt

This doesn’t look too bad. We found all the rows that had a “THEFT” and “FTA” separated by any single character.

We found some with a space, some with a dash))
and some with a slash. However, what if not all the ¢nargepesc resmrey pacenE e Gmials
booking officers use that convention (single

HEFT FTaA

Tl 1 1. 1 1.
character between the two words) when they enter THEFT /FThA 2 2.63 3 3.95
the charge description? Look at the results of the b= UM g 3 : L : EE
- THEFT 2 /FTa 2 2.63 T 9.21
next WHERE THEFT 2 FTh 1 1.32 8 10.53
THEFT 2/FTaA 2 2.63 10 13.16
s v v, THEFT 3 FTa 1 1.32 11 14 .47
where ChargeDesc like 'THEFTSFTA'; THEET. 3 iETA 1 a5 . 15 79
THEFT 3 /FTﬁ 5 6.58 17 22.37
. . . THEFT 3 /FTh 5 6.58 22 28.95
Notice that the original values are still there, but we tHEFT 3 FTA 2 2.63 24 31.58
H hilit THEFT 3-FTh 1 1.32 25 32.89
pick up a lot more possibilities. It pays to know THEET. 3/CAS/ETA 3 5 5c = 36 5
your datal! THEFT 3/FTA 21 27.63 49 64.47
THEFT FThA 3 3.95 L2 68.42
THEFT-FThA 1 1.32 53 69.74
THEFT/FTA 23 30.26 76 100.00

e SOUNDS LIKE

The “sounds like” operator (=*) uses the Soundex algorithm to match like character values. A little background on the
Soundex algorithm will help in determining when and where you might use it.

The Soundex algorithm encodes a character string, usually a name, according to rules originally developed by
Margaret K. Odell and Robert C. Russel in 1918. The method was patented in 1918 and 1922. It was used
extensively in the 1930’s by WPA crews working to organize Federal Census data from 1880 to 1920. It is widely
used in genealogical software and other applications where name searching and matching is paramount.

The algorithm returns a character string composed of a single letter followed by a series of digits. The rules for
calculating the value are as follows:

- Retain the first letter in the argument and discard the following letters:

-AEHIOUWY
- Assign the following numbers to these classes of letters:
1:BFPV
2:.CGJKQSXZ
3:DT
4:L
5:MN
6:R

- If two or more adjacent letters have the same classification from Step 2, then discard all but the first. (Adjacent
refers to the position in the word prior to discarding letters.)

For example,
select LastName, FirstName
from SASClass.Inmates
where LastName =* 'Smith';

Using the above rules, what is the value of “SMITH” that we used in the query above?

Step 1 — retain the first letter (“S”) and eliminate the “I” and “H”: SMT
Step 2 — “M” gets a value of 5 and “T” gets a value of 3

So, “SMITH” has a Soundex value of “S53”.

SUGI 30 Tutorials

Let’s look at the results of our example query and check some of the values that were returned:

Last Cumulative Cumulative
HName Frequency Percent Frequency Percent
SCHMIDT 1 3.23 1 3.23
SCHMIT 1 3.23 2 6.45
SHITH 7 87.10 29 93.55
SHITHEE 1 3.23 30 96.77
SNEED 1 3.23 31 100.00

“SNEED” and “SCHMIDT” seem a bit far removed from “SMITH?”, in spelling anyway — let’s follow the same steps as
above to give them a value.

SNEED:
Step 1 — retain the first letter (“S”) and eliminate the “E”: SND
Step 2 — “N” gets a value of 5 and “D” gets a value of 3
SNEED = “S53”

SCHMIDT
Step 1 — eliminate the duplicate value letters (S/C, both 2, and D/T, both 3): SHMID
Step 2 — retain the first letter (“S”) and eliminate the “H” and “I”: SMD
Step 3 — “M” gets a value of 5 and “D” gets a value of 3

SCHMIDT="S53"

Soundex is most useful for matching English-based names. It is less useful for other strings and there are other
algorithms for phonetic matching — they are just not built into SAS’ SQL!

ONE MoRE WORD ABOUT WHERE

All that we've learned about WHERE clauses so far can be applied to columns that are not in the SELECT list of
columns. This can be a handy way of subsetting a table, but can make debugging a bit more challenging since you
cannot confirm that your selection logic worked properly. The examples above are quite simple, but a complicated
WHERE with a number of columns referenced and multiple ANDs and ORs could pose a problem. It is generally
good practice to initially include the WHERE columns in the SELECT statement so that the logic can be verified.
Then those columns can be removed later.

DATASET OPTIONS IN THE FROM CLAUSE

Any dataset option is valid on the tables in the FROM clause. As the example below shows, the WHERE clause in
the query and the WHERE option on the table in the FROM clause return are both valid and return identical results.

select * select *
from SASClass.Inmates from SASClass.Inmates (where=(Sex eq 'M'));
where Sex eq 'M';

There are a couple situations where the use of dataset options may be preferred to the equivalent syntax in the query
itself. Both have to do with columns that are named with SQL reserved words. Suppose that our charge data had a
court case number stored in a column named Case and we wanted to get a set of rows that had a value in that field.
The following query fails.

create table WithCaseNumber as

select *

from ChargeData

where year (BookingDate) eq 2004 and
Case ne '';

We can’t use the column name Case in the SELECT statement or WHERE clause because it is a reserved word.
But, we a couple ways we can get around this using dataset options.

We can rename the column with a RENAME option or use, like in the example at the top of the page, use a WHERE
option. Either of the following queries would produce the desired results.

select *

10

SUGI 30 Tutorials

from ChargeData (rename= (Case=CaseNumber)
where year (BookingDate) eq 2004 and
CaseNumber ne '';

select *
from ChargeData (where=(Case ne ‘'))
where year (BookingDate) eq 2004;

SORTING YOUR DATA

Up to now, everything we’ve seen of SQL could be done in a single datastep. So far, we've looked at SELECT,
FROM and WHERE. These all play a role in determining what information is going to be included in the results of the
query. The ORDER BY clause takes the rows selected by those three and sorts them. The ORDER BY clause is
optional and if it is used it must follow the WHERE clause, if used, or the FROM clause, if WHERE is not used.

select *

from SASClass.Charges
where ChargeType eq ‘A’
order by FIM;

This query would select all the assault charges and sort them by the type of warrant (FIM: felony, investigation,
misdemeanor).

As you can probably guess, the syntax of the ORDER BY clause is similar to the BY statement of PROC SORT. The
column, or columns, you want the rows sorted by are listed with multiple columns separated by commas.

Let’s say that we wanted to be a bit more selective in our sorting above and we wanted to look at a list of the
agencies that caused the inmate to come to jail for each warrant type. We can just add another column, OrgAgency,
to the order list.

Orgégency | BookMum | F|M|
select OrgAgency format=$Agency., 1 Maybemy Police 201153168 FB
BookNum, 2 Maybeny Police 201152188 FE
FIM 3 Mapbermy Police 201102777 FB
from SASclass.Charges 4 Mayberny Police 193020281 FB
) g . 5 Maybermy Police RO
where ChargeType eq 'A E | Mankoer Dol
order by FIM,OrgAgency;
17 M aybery County Sheriff 198018017 FB
Now our results are sorted by warrant type and then by agency: B Mooy County Short T i M 1
first all the felonies by agency, then all the investigations b 17 Meybeny Courky Sherdt 1970414 T8
Irs y agency, g y 20| Maybery Courty Sheiif 200155 FR
agency, then all the misdemeanors by agency. Here are some 2| Mauk
partial results: 2
s . , 38 Maybemy Police 203032532 FC
Lopk closely at the results and you'll see that we probab[y didn’t "33 | Mapbeny Police S20gE FC
quite get what we wanted. We forgot that there are multiple 40 | Maybeny County Sheriff 195018563 FC
types of each warrant type: “FB”, “FC”, etc. for felonies and so 41| Mapbeny County Sherif 196039523 FC
on. There is a sorted list of agencies for each of the subtypes. S| Mavberry County Sherit 1033574 | FE-

What we probably wanted was a list of all the agency values are together regardless of the subtype of warrant. How
would we do this with PROC SORT? You’d have to make a new column that had only the first character of the
warrant type and sort by that. Or, you could create a format that

mapped all the warrant types to that first character. The point is . PD“CS'QAQEW “;fﬁg;g |Egﬂ
that there would be another step involved. 2| Mapheny Palice 195041413 FR
& Mayberry Police 197025422 FR
Why mention this unless there’s a way to do it with SQL? Well, 4 |Mapbemy Police 195057285 FS
here’s a powerful feature of ORDER BY in SQL: you can use 5 | Mapbeny Police TRAMIARRE 207
functions in the ORDER BY clause. This allows us to get the B |Maybeny Police
i i H 7 M ayberm P-*
results below by tweaking our query just slightly. .
SUSUS994S Fa
select OrgAgency format=$Agency., e 198057626 FS
BookNum, ey Police 200161089 FR
FIM 44 I apbermy Police 202029839 FC
45 Mapberny County Sherff 198018017 FB
16 I ayberny County Sheriff 203051856 FR
A7 Mayberry County Sheriff 193027210 FB
48 b apbermy County Sheriff 203016154 FR
11 49| Maybery County Sherif 202043687 FE

SUGI 30 Tutorials

from SASclass.Charges

where ChargeType eq 'A'

order by substr(FIM,1,1),
OrgAgency;

Now we are just sorting by the first character of the warrant type and then by agency. We didn’t need to create
another column or do any additional steps to get what we wanted.

Alphabetic Sorting

We've just looked at the ability to use functions in the ORDER BY clause. Now, let’'s see how to take advantage of
that to perform a task that is commonly desired.

Let’s say our booking officers were willy-nilly in the way that they entered the charge description: sometimes all
upper-case and sometimes all lower-case. If we wanted a sorted list of charge, we could use ORDER BY to get that

list.
Chargelesc |
select ChargeDesc 1 AGGRESSIVE BEGGING
from MixedCase 2 AGGRESSIVE BEGGING

ALCOHOL BYG OM METR™
ALCOHOL TRAMSITF
ALCOHOLIC BEW 1M

B ANIMAL ON PT

order by ChargeDesc;

= [

(5,1

Sorted by charge description, but the results are far from what we want.

7 ARNTLHAT
We have “AGGRESSIVE BEGGING” at the top of the list, but it's also more than :
6,000 rows down as “aggressive begging” — a conundrum with PROC SORT for o ON
years! Again, we could create a new variable and sort by that or use a function in BOTE | 'WORK REL SUSPEMSION
the ORDER BY clause to get the desired order. B017 | achol in park cash
E018 | aggressive begging
select ChargeDesc E019 | alcohl in park
from MixedCase B020 | alcohal restric area
order by upper (chargeDesc) ; B0 amended to prop dest
ChargeDesc | . . . i
T [achalin park cash There are a some thlngs' to notice .about this new result:
= | AGGRESSIVE BEGGING e the results are now in the desired order
BN ccoie=cve begang e the original case has not been changed — that is determined by the SELECT
4 |AGGRESSME BEGGING statement
§ | alcohlinpark e there can be a “randomness” to the groups of values — look at “aggressive
£ |ALCOHOLBYG OMMETRO begging”
S ! clcobol reshic area e officers don’t always spell that well — (achol, alcohl)
8 |ALCOHOL TRANSIT PROP

Note: if you want to get rid of the “randomness” and group all the upper case together (‘“AGGRESSIVE BEGGING”)
and all the lower case together (“aggressive begging”) you can sort by both the upper-cased column and the original
column.

select ChargeDesc
from MixedCase

order by upper (ChargeDesc),
ChargeDesc;

Now, within each charge description the upper case values will be first, followed by the lower case values. No more
“randomness”!

You'll notice that all the queries above give a strange note in the log:

NOTE: The query as specified involves ordering by an item that doesn't appear in its SELECT clause.

This is because the upper-cased value of ChargeDesc was never named in the SELECT statement, only in the
ORDER BY clause.

12

SUGI 30 Tutorials

Note: the UPPER and LOWER functions are SQL standard functions and cannot be used in elsewhere in SAS. They
operate the same as the SAS UPCASE and LOWCASE functions. UPCASE and LOWCASE can also be used in
SQL queries.

THE DESC OPTION OF ORDER BY
The default sort order is ascending. To get a descending sort, use the DESC option following the column name.

select OrgAgency,
BookNum,
FIM

from SASclass.Charges

where ChargeType eq 'A'

order by substr(FIM,1,1) desc,
OrgAgency;

This is the same query we used to get a list of agencies in warrant type order. By default, the felonies (“F...”) came
first. Now, the misdemeanors (“M...”) will come first, followed by investigations (“l...”) and felonies.

The DESC option can be added to as many columns as needed, always following the column name and before the
comma or semicolon. For example, to list the agencies in reverse order and keep misdemeanors listed first we
simply add another DESC:

Orgfgency | B oakMum | Flbd |

1 |State Police 196013490 MD

select OrgAgency format=$Agency., 7 |State Police 195031132 ME

BookNum, 3 |State Polics 195024815 MB

FIM I e Foice] 197013708 ME

from SASclass.Charges 5 |State Palice 194042770 ME

where ChargeType eq 'A' 6 |State Police 1970237012 MB

order by substr(FIM,1,1) desc, 7 State Police 202029725 MC

OrgAgency desc; 8 State Police 201130773 MC

9 | State Palice 203020589 MC

10 | State Police 203036452 MD

The resulting table would be something like this (see right). The 11| Siler City Palice 201148094 MO

misdemeanors come first and within the misdemeanors, the 12 | Siler City Police 202047126 MO

agencies are in descending order. 13 | Siler City Police 193048956 MR

14 | Siler City Polics 202028230 MO

Note: the placement and spelling of the descending option is —}: ?:e[Ef:y E“:fce fgggg;g: mg
different than PROC SORT. In that procedure, the DESCENDING = s:;: E:ty e

‘ g y Police 193020537 MO

option precedes the variable name. 18| Raliegh Palice {04ISEE ME

19 | Raliegh Police 193047925 MB

AGGREGATE FUNCTIONS

You can use aggregate (or summary) functions to summarize the data in your tables. These functions can act on
multiple columns in a row or on a single column across rows. Here is the list of aggregate functions.

Avg average of values ® NMiss number of missing values

Count number of non-missing values e Prt probability of a greater absolute value of Student’s t

Css corrected sum of squares * Range range of values

cv coefficient of variation ® Std standard deviation

Freq (same as Count) ® StdErr standard error of the mean

Max maximum value ¢ Sum sum of values

Mean (same as Avg) e T Student’s t value for testing that the population mean is 0
Min minimum value ® USSs uncorrected sum of squares

N (same as Count) ¢ Var Variance

Note: the SUMWGT function is not listed here as there is no provision for a WEIGHT statement in SQL and the
results of SUMWGT are the same as COUNT.

13

SUGI 30 Tutorials

We've already looked at using SAS functions in a SELECT statement to create new columns based on the value of
an existing column. Aggregate functions create new columns as well, either by summarizing columns across a single
row or by summarizing a column down multiple rows.

If more than one column is included in the function argument list then that operation is performed for each row in the
table. In the table below, each row in the Charges table gets a new column, OffDays, that is the sum of GoodTime
and CreditDays.

select *,
sum (GoodTime, CreditDays) as OffDays
from SASClass.Charges;

Bootdum | _Chagian | Bai | Chagebesc [FIM] ChagsTyps | GoodTme | CedDaye
1 152000028 1 1050 RECKLESS DRIVING $3% MB T o o
2 | 152000056 1 VUCSA/ SO0A FR D 0 0
& 192000056 2 . ATTEMTAUCSA MR D 0 o
4 152000146 1 550 Dow L FTA MR U 1] 0
2 152000068 1 500 DRIVING DURING SUSPE MD T 0 0 v
6 192000163 2 500 HAB TRAFFIC OFFEMDER MD T ——— L4 across Columns
7 1520001 &8 3 . ATTEMP VUCSA MC D 180 160
8 152000068 4 . PROE HOLD FC N 3n 10
5 |152000169 5 PROB HOLD fC N 0 10
10| 192000052 1 150 SIMPLE ASSALLT MD A 0 0
11 152000352 2 2000 ASSAULT MB A 0 n
12| 152000352 3 300 DR LICSUS/REVNDINS ME T 0 e e
13 132000402 1 2050 D W LMTO MB U 0 i e S
0 10 40
k1] 10 40
0 1]]
o o n

If the argument list contains a single column the operation is performed down all the rows in the table. The following
query would summarize Bail, in a number of different ways, for the entire table. Notice that the results of this query is
a single row containing the sum, mean and maximum values of Bail, as well as the number of rows with a missing
value for the Bail column.

select sum(Bail) as TotalBail,
mean (Bail) as MeanBail,
max (Bail) as MaxBail,
nmiss (Bail) as NoBailSet
from SASclass.Charges;

_ | BookNun | ChsgeNum | Bal | ChemgeDesc [FIM] ChargeTope | GoodTime [CrediDays
1 152000028 1 1050 RECKELESS DRIVING $33% MB T 1] 0
2 192000036 1 iU DA FR D o 0
3 192000096 v ! MR D 0 0

_ 4 1132000146 i down I'OWs MR U o 0
B 13200068 i Sl LRiviRG DURING SUSPE MWD T o 0
B 182000068 2 500 HAB TR&FFIC OFFEMDER MD T o 0

|5/ 132000168 3 . ATTEMPWUCSA MC D 180 160
8 132000168 4 . FROB HOLD FC N 30 10
9 192000168 5 . PROB HOLD FC N 0 10

10| 132000352 1 150 SIMPLE ASSALLT MD A 0 0
11 132000352 2 2000 ASSAULT ME A 1] 0
12 192000352 W O FUE W M 1R o 0
13 |13z000402 O VIEWTABLE: Work.Bailsummary 0 0

TotalB il MeanBail | MaxBal HNoBailS et
1 31197597 449008013531 1000000 5040

Note: you can reference as many aggregate functions as you need in a single query and they don't all have to act on
the same column.

You'll notice in the preceding query that no columns were listed other than those using the aggregate functions.
Remember, we're telling SQL to summarize down all the columns in the table. How would it be interpreted if we
asked for some other columns as well? For instance,

select BookNum,

ChargeNum,
Bail format=dollarl5s.,

14

SUGI 30 Tutorials

sum(Bail) as TotalBail format=dollarl5.
from SASClass.Charges;

The query is saying two things, “Give me the booking number and bail amount for all the rows in the table” and “Give
me the sum total of bail for the whole table.” One of those questions would return back 11,000+ rows while the other
would return one. The actual result is that both requests are granted. First, the summary function will be computed
and the total bail will be calculated. Then, that result will be attached, as a new column, to every row in the output.

BookMum | Chargatum | B ail | TatalB ail
1 192000028 1 $1.,050 $31.197.537
2 192000036 1 $31.197.597
2 192000036 2 . $31.197.597
4 132000146 1 $550 33,197 537
] 192000168 1 $500 $31.197.537
E 192000168 2 $500 $31.197.537
7 192000162 3 $31.197.537

You'll also get a note in the log telling you that the query had to run through things more than once:
NOTE: The query requires remerging summary statistics back with the original data.
THE GROUP BY CLAUSE

By default, summary functions work across all the rows in a table. You can summarize groups of data with the
GROUP BY clause. For example,

select BookNum, Original table Summarized table
sum(Bail) as TotalBail BookMum | Chargeum Bail BookHum | TataBal |
from SASClass.Charges 1 192000028 1 1080 1 192000028 1,050
group by BookNum; 2 |19z000095 1 2 |192000095 ;
3 |19z000095 2 3 |192000146 $550
Partial results of the query above are shown ; éjz::gggnmgg 1' 00 5 }32333;22 :12323
here: 5 000168 7 50 152000402 $2,050
7 |19zo00TER - 152000422 4500
8 |19z000168 4 152000427 $750

Notice that there is now one row per booking
number and that the bail amounts have been o o S
summarized. Remember from the previous ﬂ 192000352
section that without the GROUP BY clause 12 W] 92000352
the table total bail would have been added to 13
each row of the table.

w

132

Ly —

The GROUP BY clause also orders the rows by the values of the grouped columns. We'll see later that there is also
an ORDER BY clause if you to specify a different sort order.

There is no requirement that the order of GROUP BY columns matches the order of the SELECT columns.

You will almost always want to include all non-summary columns from your SELECT statement in the GROUP BY
clause. Let’s look at the following query to see what happens if you do not.

select FiM, M| ChsgeTpe| Towal
ChargeType, ~1_|m D $11.957
mean (Bail) as TotalBail format=dollarl5. 2 _|FE N $11.957
from SASclass.Charges : V :::;’Ef
group by FIM; Uarrant /FB P
Type TotalBail & F8 D b
This query will pass through the table twice and do the FB $11,957 3
following: Ex 510,756\%F° o ‘
« calculate the mean bail for each value of FIM (pass 1) Y g T —=*
FC N

e return all rows of the original table (pass 2)
- ordered by FIM

$10.750

$10.750

- with the appropriate value (FIM-specific) of $10.750
TotalBail attached to each row :}gigg
$10.750

$4.974
§4,974
$4.974

15

SUGI 30 Tutorials

Notice that the FIM total bail has been added to each row. Chances are, however, that this is not what you wanted
from the query and you need to add the charge type to the GROUP BY clause.

We mentioned a few pages back that there are instances where eliminating or having an incomplete GROUP BY can
be used to your advantage. Let’s assume that we have a table with one row per charge type containing the total bail.
We can make use of the summary behavior to get the percent of total bail that each charge type represents. This
query

select ChargeType format=$Charge.,

Bail format=dollarl5.,

Bail / sum(Bail) as PctOfTotal format=percent9.2
from BailGroups;

Charge Tyvpe Bail PctOfTotal
adds the table total bail to each row of the table. Assault $6,682,489 21.42%
Instead of using this as a separate field, as we’ve done grnst itution 53%35 , ggg I?-gg§
H i i i rug]] -
in the past, we can use this value in an expression to Homic ide $2. 287 500 7 32%
calculate the percentage of total bail. Non-Comp1 iance $626,449 2.01%
Other g? , 882,757 25.27%
s f : Property 6,376,589 20.44%
As we've seen befor'e this query will make two passes Traffic (non-alcohol) $1.507 . 650 4. 897
through the table — first to calculate the total bail and DUl $851,318 2.73%
then to write out each row of the table. Domestic Violence 51,247,244 4.00%

THE SPECIAL CASE OF COUNT()

The COUNT function is a little different than other summary functions in a couple different ways. First, it can accept
either a character or numeric column name as the argument — the other functions require a numeric column. The
COUNT function returns the number of non-missing values of the specified column. Secondly, you can pass an
asterisk (*) to the function and get a count of the total number of rows in the table (or group).

The following query counts non-missing value rows for two numeric columns (GoodTime and SentenceDate), a
character column (ChargeDesc) and counts all the rows in the table (*).

select count (GoodTime) as GoodTime_Count format=comma7.,
count (ChargeDesc) as ChargeDesc_Count format=comma?7.,
count (SentenceDate) as SentenceDate_Count format=comma7.
count (*) as TotalRow_Count format=comma7.

from SASclass.Charges;

GoodT ime_ ChargeDesc_ Sentence TotalRow_
Count Count Date_Count Count
11,987 11,987 2,750 11,987

We can see from the output that there are no missing values for good time days or charge description but, as would
be expected, there are a number of missing values for the sentence date.

We can mix and match the scope of COUNT (column-specific counts vs total counts) in the same query. This query
gets the column-specific non-missing counts and divides them by the total row count to get the percentage of non-
missing values. We're also using a GROUP BY clause, so the counts will be specific to each value of charge type.

select ChargeType format=$Charge.,

count (ChargeDesc) as ChargeDesc_Count format=comma7.,

count (ChargeDesc) / count (*) as ChargeDesc_Pct format=percent9.2,

count (SentenceDate) as SentenceDate_Count format=comma7.,

calculated SentenceDate_Count / count (*) as SentenceDate_Pct format=percent9.2
from SASclass.Charges
group by ChargeType;

16

SUGI 30 Tutorials

ChargeDesc_ ChargeDesc_ Sentence Sentence
Charge Tvpe Count Pct Date_Count Date_Pct
Aszault 941 100.00% 203 21.5¥%
Prostitution 230 100.00% 90 39.13%
Drug 1,355 100.00% 147 10.85%
Homicide 16 100.00% 0 0.00%
Mon-Comp 1 iance 1,425 100.00% L48 38.46%
Other 1,826 100.00% 258 14.13%
Property 2,045 100.00% 494 24 .16%
Traffic (non-alcohol) 2,515 100.00% 635 25.25%
DUl 851 100.00% 251 29.49%
Domestic Violence 783 100.00% 124 15.84%

Note: There is one other difference between COUNT and other aggregate functions. In other aggregate functions
passing multiple column names to the function causes it to calculate the desired statistic across those columns for
each row in the table. The COUNT function is not designed to operate across columns and will not produce
meaningful results if multiple columns are passed to it.

THE DISTINCT OPERATOR

While DISTINCT isn’t really a summary function, we’ll discuss it here because it has some of the properties of a
summary function.

Facility
select distinct Facility 4
from SASClass.Bookings; 5
H
. . . . H
The first query above would return a list of all the unique values of facility: P
R
H

No counts, just a list. You can have more than one column listed after the DISTINCT operator
and you would get a list of all combinations of the columns. If a column had a permanent format
associated with it, or you used the FORMAT option to assign a format, the distinct value list would have formatted
values. For instance, this query returns formatted values of the unique combinations of race and sex.

select distinct Race format=$Race.,
Sex format=$Gender.
from SASclass.Inmates;

Race Gender
: Note: When multiple columns are listed with DISTINCT, only the actual value
Asian Female " . . .
A= ian Male combinations are returned — not all possible combinations. If, in the Inmates
g:act ;er]nale table used above, there were no Native American females that row would not be
ac ale

Mative fAmerican Fenale in the result set.

Hative American HMale

Other/Unknown Female There is a danger when using formatted values and DISTINCT. The distinct

ﬂﬁ'?er/”"k""“" Male value list is built on the actual, unformatted data and then the formats are applied
ite Female . .

White Male when the data is presented. If there are multiple raw values assigned to the

same formatted value your distinct list may not look so distinct.

select distinct Facility as Facility format=$Secure.
from SASclass.Bookings;

Facility
If you look at the distinct facilities list from the first example you can see that we end up with Secure
the same number of “distinct” values in the list. If you matched up the rows in the two Secure
outputs you can conclude that the values “4”, “5”, “M”, “P”, “R” are formatted “Secure” and gééﬁ:g‘“ i
“H” and “W” are formatted “Alternative”. Secure
Secure
The following query demonstrates the use of DISTINCT within the COUNT function. This filternative
query will return the number of unique values of Facility — in this case, 7.
select count (distinct Facility) Facility
from SASClass.Bookings; Count
7

17

SUGI 30 Tutorials

Note: you cannot list more than one column in the COUNT function. If you wanted the number of distinct
combinations of race and gender in your data the following query would generate an error:

select count (distinct Race,
Sex)
from SASclass.Inmates;

You could get the count by concatenating the two columns into one and getting a count of that value. For instance,

select count (distinct Race| | Sex)
from SASclass.Inmates;

The query above returns a value of 10, which we can see from the example above is the number of values of race
and gender.

THE CALCULATED KEYWORD

There is an important timing feature of SQL to keep in mind before we discuss the CALCULATED option. The
SELECT statement and WHERE and GROUP BY clauses are acting on columns as they “come into” the query. The
ORDER BY , and soon to be discussed HAVING, clauses which act on columns as they “leave” the query. This
means that SELECT, WHERE and GROUP BY all need to reference columns that are in the tables referenced in the

query.

In an earlier query we used the SUM function to add good time and credit days to get a new column, OffDays. We
might try to write a query to select records that had some “off days” as follows:

create table OffDays as
select *,
sum (GoodTime, CreditDays) as OffDays
from SASClass.Charges
where OffDays gt O;

We would have seen an error because the WHERE clause doesn’t know what OffDays is — it's not in the Charges
table.

The CALCULATED option is simply a shortcut to SQL to say, “replace this with the expression that created this new
column.” The following two WHERE clauses are equivalent:

create table OffDays as
select *,
sum (GoodTime, CreditDays) as OffDays
from SASClass.Charges
where sum(GoodTime,CreditDays) gt O;

where calculated OffDays gt O;

You must also use CALCULATED in the SELECT statement if you want to reference another column that was
created in the SELECT statement. let’s say we wanted to create another column that was simply a flag (“*”) turned
on if the new OffDays column was greater than zero. The following query creates the OffDays column and then
references it to create the flag, OffDayFlag.

select *,
sum (GoodTime, CreditDays) as OffDays,
case
when calculated OffDays gt 0 then '*'

else ' '
end as OffDayFlag
from SASClass.Charges;

18

SUGI 30 Tutorials

One other thing to note about using CALCULATED column references. The column must have been created in the
SELECT prior to its being referenced with a CALCULATED option. Switching the order of the columns in the query
above would cause an error. Remember, that CALCULATED tells SQL to “replace the name with the expression” — if
the expression hasn’t been seen yet, the substitution cannot happen.

RELATIVE COLUMN REFERENCING — A GROUP BY SHORTCUT

Instead of using column names in the GROUP BY clause you can use the column position. The following two
GROUP BY clauses are equivalent:

select FIM,

ChargeType,

mean (Bail) as TotalBail
from SASClass.Charges
group by 1,2;

group by FIM, ChargeType;

Relative column referencing is often a nice little time saver. All you have to do is use the position of the column you
want rather than the column name. If is most useful when you’re grouping on calculated columns and you don’t want
to type “calculated” over and over again.

There are a couple warnings about using relative referencing.
e First, it can be a bit of a troubleshooting issue as you have to look back and forth between the SELECT and
GROUP BY to see what columns you’re really grouping on.
e Second, if you decide to switch the order of the columns in your SELECT statement, the row order in the
result set may also change. Take the example above:

select FIM, select FIM,
ChargeType, ChargeType,
mean(Bail) as TotalBail mean(Bail) as TotalBail
from SASclass.Gharges from SASclass.charges
group by 2,1; - » group by ChargeType,FIM;
In both of the queries above the result rows are sorted by ChargeType
and FIM.
select ChargeType, select ChargeType,
FIM, FIM,
mean{Bail) as TotalBail mean(Bail) as TotalBail
from SASclass.Charges from SASclass.Charges
group by 2,1; < » group by ChargeType,FIM;

In these queries we've changed the column order, but left the GROUP BY
clause the same. Mow, the query on the left has rows sorted by FIM and
ChargeType, while the query on the right still has the original sort order
(ChargeType and FIM).

Just some things to keep in mind when you use relative referencing rather than column name referencing in the
GROUP BY clause.

GROUP BY AND ORDER BY TOGETHER

The GROUP BY clause has an implied sort and the group by FIN

results are displayed in that order. If you use both apiiehy Bl order;by. MeanBall, dese;
GROUP BY and ORDER BY in the same query, the Fin HeanBail Fin MeanBai |
ORDER BY determines the sorted order of the result. F $13,152 1 $18,890
1 $18,890 F $13,152

. M $1,066 M $1,066
You can see the results of the two methods in the GROUP BY orly - GROUP BY sort is overridden
query snippets below. The first results are grouped sorted by FIM by ORDER BY - sorted by mean
by the type of warrant (FIM) and are displayed in the bail (descerding)

alphabetical order of the values of that column (“F”,
“I", “M”). In the second query the ORDER BY clause which will sort the result in descending order of mean bail.

19

SUGI 30 Tutorials

THE HAVING CLAUSE

To select rows based on the results of a summary function, use the HAVING clause. The HAVING clause is similar
to the WHERE clause in that it allows you to select rows to keep in the result set of your query. It is an optional
clause and is placed after the GROUP BY clause.

select BookingMonth,
sum (NumCharges) as TotalCharges
from SASClass.Charges
group by BookingMonth
having TotalCharges gt 275;

In the query above the HAVING condition (TotalCharges > 275) is evaluated after the query has run and the rows
have been grouped and then only rows that meet the condition are written to the result set.

It's important to stress the difference between HAVING and WHERE. The WHERE clause selects rows as they come
into the query. It has to reference columns that exist in the query table or are calculated using columns in the query
tables. It cannot reference summary columns. HAVING, on the other hand, references summary columns as the
rows go out of the query.

What happens if you use HAVING on non-summary columns? A lot depends on the rest of the SELECT. If you do
not have any summary columns, the WHERE and HAVING clauses will produce identical results. For example, these
two queries produce exactly the same result.

select Race select Race
from SASclass.Inmates from SASclass.Inmates
where Sex eq 'M'; having Sex eq 'Wm';

There is no summarization of rows, so the values going in and the values coming out of the query are the same.

There are some big differences, however, when there is a summary function in the SELECT statement and the
HAVING clause references a non-summary column. Let’s look at the queries below.

select Race, select Race,
count(*) as Total count(*) as Total
from SASclass.Inmates from SASclass.Inmates
where Sex eg 'M' group by Race
group by Race; having Sex eq 'M';
Race Total Race Total
a 91 a 17 Two important guestions about
B 297 a 117 the results of this query - as
| a1 f 117 compared to the one on the
u 6 a 17 left
W 1368 A 117 .
x 2 A 17 .
v 3 First, why are there so many
B 295 rows? Hint: there are as many
The query above will process only rows g ggg rows in thE relsult as thebre are
where the gender is male. The GROUP BY B 296 malesinihednmatas table.
race applies only to males.
PR ¥ | 44 Second, why are the counts
The results of the query to the right are very : 544 ld'fe’eg‘ ('?'- 91 Asians 2 t':‘e
different and lead to two very interesting | 44 : t_an 11 attacheld to?a the
questions. sian rows on the right

Let’s think about those questions. If HAVING references a non-summary column that is not in the SELECT it “adds” it
to the list of columns. So, the query on the right above is equivalent to this one, except that the sex column is not
kept.

select Race,

sex,
count (*) as Total

20

SUGI 30 Tutorials

from SASclass.Inmates
group by Race
having sex eq 'M‘;

Remember that when a GROUP BY clause is incomplete? The entire table is returned to the result set and the
summarized value is added to every row. So, we get the total number of rows for each race and that value is added
back to each row. Then, the HAVING is applied and the male rows are kept. The result set contains all the male
rows with the count for all the rows.

Can you see why we want to reserve HAVING for summary column filtering and WHERE for non-summary column
filtering?

SuMMARY FUNCTIONS IN HAVING

We just saw that there is a big danger in using non-summary columns in the HAVING clause. However, using
summary columns in the HAVING that are not in the SELECT can be a very handy thing.

Let’s look at a way to get all the charges that have a bail amount greater than the mean amount.

select BookNum, Without a GROUP BY the
ChargeNum, :
Bail, summary value is added to all the
mean(Bail) as MeanBail rows in the result table.
from sasclass.charges; EEH1HMh
BookMurm | ChargeMum | Bail | MeanBail |
192000028 1 1050 4431.3758998
132000036 1 . 4451.3758338
192000096 2 . 44913758998
192000146 1 550 4431.3758398
132000168 1 500 4431.3758338
132000168 2 500 4431.3758338
select BookNum,
ChargeNum,
Bail,

mean(Bail) as MeanBail
from sasclass.charges
having Bail gt MeanBail; \“xh‘_

EookMum ChargeMum Bail MeanE ail
152002339 1 500000 4491.37583598
We can add a HAVING clause to pick 192003065 1 5000 4491.3758938
up the rows that we want. 192003065 2 5000 44913758338
152003065 3 10000 44913758338
152006035 1 5000 4491.3758938

But, we don’t really need that mean bail column repeated on every row in the table. Well, we can put the summary
function in the HAVING clause rather than in the SELECT and get the same result.

select BookNum,

ChargeNum,
Bail
from sasclass.charges
having bail gt mean{bail); ———a BookNum | ChargeMum | Bail
152002389 1 500000
132002065 1 5000
We get the same rows as we did with
; o 132003065 2 5000
the query above, but we've eliminated 192003065 . 10000
that repetitive column.
Ekroge colu 192006085 1 5000

We can go a step further here. By adding an incomplete GROUP BY clause, one which does not reference all the
columns in the SELECT statement, and keep a summary function in a HAVING clause we can filter our result set
based on the grouped values of the summary statistic. If, in the example above, we wanted to get charges that had a
bail higher than the mean bail for the warrant type of the charge we could add FIM to the SELECT and a GROUP BY.
Just as above, the mean bail would be implicitly added to each row, but this time it would be the mean of the GROUP
BY column.

21

SUGI 30 Tutorials

select BookNum, The mean bail for FIM value is added
ChargeNum, to each row and the result set is
Fim, Mﬁlter&d based on the group mean
Bail
from sasclass rges
group by FIM
having Bail gt mean(Bail); BookNum | ChargeNum |FIM| Bl
196060341 1 FB 40000
194046010 2 FB 25000 Based onmean
197033088 1Fe 200p FBbal
194010678 To1mMe 2000
197012676 2 MB 1990] Hassd o
194053255 1 ME 1425 B bail
200102102 1 ME 2600
CONCLUSION

It's amazing what you can do with those seven keywords and a few options. The power of SQL to organize,
summarize and order your data all in one query can save you considerable time in developing your applications.

You can learn a lot about SQL and its implementation in SAS in just a few pages, but there is so much more: multiple
table joins, embedded queries, passing queries to other databases, etc. | hope that this paper has whetted your
appetite for learning more about SQL.

AUTHOR CONTACT INFORMATION

Pete Lund

Looking Glass Analytics
215 Legion Way SW
Olympia, WA 98501
(360) 528-8970

(360) 570-7533
pete.lund@lgan.com
www.lgan.com

ACKNOWLEDGEMENTS

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

22

	SUGI 30 Proceedings Table of Contents

