SAS OnlineTutor HomeFAQ PageSuggested Learning PathsContents+Searchback||next

Quiz: Computing Frequency Distributions

Select the best answer for each question and click Score My Quiz.

  1. By default, PROC FREQ creates a table of frequencies and percentages for which data set variables?

     a.   character variables
     b.   numeric variables
     c.   both character and numeric variables
     d.   none: variables must always be specified

  2. Frequency distributions work best with variables that contain:

     a.   continuous values
     b.   numeric values
     c.   categorical values
     d.   unique values

  3. The data set Finance.Loans includes the following variables. Which is unsuitable for frequency analysis?

     a.   AccntNum
     b.   Rate
     c.   Region
     d.   Term

  4. Unless otherwise specified, in what order are values displayed in frequency distributions?

     a.   by their appearance in the data set
     b.   by their formatted values
     c.   by their descending frequency count
     d.   by their unformatted values

  5. Which ORDER= option will force frequency distributions to be displayed by frequency count?

     a.   order=data
     b.   order=formatted
     c.   order=freq
     d.   order=internal

  6. Which option was used to produce the table shown below?
    proc format;
       value htfmt low-64='Short'
                   65-70='Medium'
                   71-high='Tall';
    run;
    proc freq data=clinic.diabmed ... ;
       tables height;
       format height htfmt.;
    run;

    Height Frequency Percent Cumulative
    Frequency
    Cumulative
    Percent
    Medium 7 35.00 7 35.00
    Short 8 40.00 15 75.00
    Tall 5 25.00 20 100.00

     a.   order=data
     b.   order=formatted
     c.   order=freq
     d.   order=internal

  7. Which PROC FREQ step produced this two-way table?

    Frequency
    Percent
    Row Pct
    Col Pct
    Table of Weight by Height
    Weight Height Total
    < 5'5" 5'5-10" > 5'10"
    < 140 2
    10.00
    100.00
    28.57
    0
    0.00
    0.00
    0.00
    0
    0.00
    0.00
    0.00
    2
    10.00
     
     
    140-180 5
    25.00
    50.00
    71.43
    5
    25.00
    50.00
    62.50
    0
    0.00
    0.00
    0.00
    10
    50.00
     
     
    > 180 0
    0.00
    0.00
    0.00
    3
    15.00
    37.50
    37.50
    5
    25.00
    62.50
    100.00
    8
    40.00
     
     
    Total 7
    35.00
    8
    40.00
    5
    25.00
    20
    100.00

     a.  
    proc freq data=clinic.diabmed;
       tables height weight;
    run;
     b.  
    proc freq data=clinic.diabmed;
       tables weight height;
    run;
     c.  
    proc freq data=clinic.diabmed;
       tables height*weight;
    run;
     d.  
    proc freq data=clinic.diabmed;
       tables weight*height;
    run;

  8. When three variables are joined in a TABLES statement, where does each appear in the layout of the tables?

     a.   levels, columns, rows
     b.   levels, rows, columns
     c.   columns, rows, levels
     d.   rows, columns, levels

  9. Which PROC FREQ step produced this table?

    Sex Weight Height Frequency Percent Cumulative
    Frequency
    Cumulative
    Percent
    F < 140 < 5'5" 2 10.00 2 10.00
    F 140-180 < 5'5" 5 25.00 7 35.00
    F 140-180 5'5-10" 4 20.00 11 55.00
    M 140-180 5'5-10" 1 5.00 12 60.00
    M > 180 5'5-10" 3 15.00 15 75.00
    M > 180 > 5'10" 5 25.00 20 100.00

     a.  
    proc freq data=clinic.diabmed;
       tables sex weight height / list;
    run;
     b.  
    proc freq data=clinic.diabmed;
       tables sex*weight*height / list;
    run;
     c.  
    proc freq data=clinic.diabmed;
       tables sex weight height / nocol;
    run;
     d.  
    proc freq data=clinic.diabmed;
       tables sex*weight*height / norow;
    run;

  10. Which PROC FREQ step produced this table?

    Percent
    Table of Sex by Weight
    Sex Weight Total
    < 140 140-180 > 180
    F 10.00 45.00 0.00 55.00
    M 0.00 5.00 40.00 45.00
    Total 2
    10.00
    10
    50.00
    8
    40.00
    20
    100.00

     a.  
    proc freq data=clinic.diabmed;
       tables sex weight / list;
    run;
     b.  
    proc freq data=clinic.diabmed;
       tables sex*weight / nocol;
    run;
     c.  
    proc freq data=clinic.diabmed;
       tables sex weight / norow nocol;
    run;
     d.  
    proc freq data=clinic.diabmed;
       tables sex*weight / nofreq norow nocol;
    run;



back||next

Terms of Use & Legal Information | Privacy Statement